Opendata, web and dolomites

MACOLAB TERMINATED

Towards a mathematical conjecture for the Landau-Ginzburg/conformal field theory correspondence and beyond

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MACOLAB project word cloud

Explore the words cloud of the MACOLAB project. It provides you a very rough idea of what is the project "MACOLAB" about.

models    experts    landau    galois    pushing    seeming    efforts    play    80s    exploring    list    central    opening    symmetry    tensor    vertex    encode    representation    date    polynomial    exactly    theory    statement    utrecht    equivalences    attacking    string    lg    operator    inspiring    gained    implies    algebras    fixed    88    structures    understand    modularity    medalist    mirror    representations    qfts    host    algebraic    display    intimately    complete    tensoriality    initially    categories    modular    correspondence    defects    university    quantum    describe    completing    gates    bridge    curie    infrared    stating    cfts    geometry    charge    lack    few    theories    mathematical    category    mathematics    complementary    point    completely    borcherds    marie    mathematically    superconductivity    supersymmetric    factorizations    cft    despite    examples    hosting    expertise    model    physics    surprising    definition    matrix    conformal    inspired    homological    places    promoted    ginzburg    interesting   

Project "MACOLAB" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT UTRECHT 

Organization address
address: HEIDELBERGLAAN 8
city: UTRECHT
postcode: 3584 CS
website: www.uu.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://sites.google.com/site/anaroscamacho/
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-08-01   to  2019-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT NL (UTRECHT) coordinator 165˙598.00

Map

 Project objective

Initially a model to describe superconductivity, Landau-Ginzburg (LG) models were promoted in the late 80s to supersymmetric quantum field theories (QFTs) completely characterized by a polynomial W called potential. They gained importance in string theory and algebraic geometry as they play an interesting role in homological mirror symmetry. On the other hand, conformal field theories (CFTs) have been another kind of QFTs which display conformal symmetry. They have focused many efforts to understand the mathematical structures which encode them, e.g. inspiring the definition of vertex operator algebras (Borcherds, Fields medalist ’88) or pushing forward our knowledge of modular tensor categories. Despite seeming two very different topics, LG models and CFTs are intimately related via a result of theoretical physics — the LG/CFT correspondence— stating that the infrared fixed point of a LG model with potential W is a CFT of central charge c(W). Mathematically this implies equivalences of categories of matrix factorizations (which describe defects of LG models) and categories of representations of vertex operator algebras (which describe defects of CFT). Up to date, we lack a complete understanding of the LG/CFT correspondence and we only have a few examples. The main goal of this Marie Curie is to find a mathematical statement for it, via completing a list of examples, exploring their properties (e.g. tensoriality or even modularity of the categories) and then attacking the main goal. Utrecht University (host institution) is one of the few places in Europe hosting experts in representation, category and Galois theory and mathematical physics, providing exactly the necessary and complementary expertise required to achieve this goal. These results will build a surprising bridge between very different areas of mathematics, opening new research gates completely inspired by physics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MACOLAB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MACOLAB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CLIMACY (2020)

Practices of Climate Diplomacy and Uneven Policy Responses on Climate Change on Human Mobility

Read More  

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More