Opendata, web and dolomites

NanoEAscopy

Mapping Nanoscale Charge Separation at Heterojunctions with Ultrafast Electroabsorption Microscopy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoEAscopy project word cloud

Explore the words cloud of the NanoEAscopy project. It provides you a very rough idea of what is the project "NanoEAscopy" about.

probe    ea    charges    made    platform    100fs    pvs    cs    correlation    segregation    ultrafast    nanostructured    electronic    ps    electro    time    composition    interaction    sites    heterojunctions    surface    electrons    stand    expertise    emitting    10fs    transfer    technique    spatial    excitons    promise    correlate    dissociate    group    local    combined    light    quasiparticles    quantify    absorption    separation    timescale    microscopy    oscs    photodetectors    length    detect    photovoltaics    spectroscopy    2d    molecular    materials    films    primary    microscopes    diodes    charge    photoexcitations    optoelectronic    hole    resolution    leds    bound    scales    host    inhomogeneity    lattice    transient    defects    coulomb    spectroscopic    pump    elucidate    variations    attempting    data    structure    photophysics    micro    image    sub    defect    passivation    thin    semiconductors    possess    oe    strain    form    organic    recombine    optical    crystallinity    variation    packing    timescales   

Project "NanoEAscopy" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.rao.oe.phy.cam.ac.uk/Research/Nanoscale
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Nanostructured electronic materials e.g. organic semiconductors (OSCs) and 2D semiconductors offer great promise for applications in optoelectronic (OE) devices, such as photovoltaics (PVs), light emitting diodes (LEDs) and photodetectors. The primary photoexcitations in both OSCs and 2D semiconductors are strongly bound excitons, quasiparticles of electrons and hole bound by the Coulomb interaction. Three aspects of these materials stand out when attempting to study photophysics of these materials. (1) Many of the crucial OE process in these systems occur at heterojunctions between p- and n-type materials, where charges recombine to form excitons and excitons dissociate to form charges. (2) The timescale for many such process is sub-ps, and charge transfer and charge separation (CS) can occur on sub-100fs timescales. (3) thin films made of these materials possess spatial inhomogeneity on µm and sub-µm length scales, due to variations in molecular packing, crystallinity and phase segregation in OSCs and due to lattice defects and variation in surface passivation and strain in 2D materials. No currently available technique has the ability to spatially correlate transient spectroscopic data with local molecular structure and composition. In order to do this, we will develop a new platform to directly image CS with sub-10fs time-resolution with sub-µm spatial resolution. Recent advances in pump-probe microscopy and ultrafast Electro-Absorption (EA) spectroscopy in the host’s group will be combined with the applicant’s expertise with optical microscopes and advanced data analysis methods to detect and quantify inhomogeneity. Novel analysis methods combined with an ultrafast EA pump-probe microscopy will allow for correlation of transient spectroscopic data with local molecular structure and composition. This will lead us to elucidate how CS is controlled by local properties such as molecular packing and crystallinity in OSCs and defect sites etc. in 2D semiconductors.

 Publications

year authors and title journal last update
List of publications.
2019 Sachin Dev Verma, Qifei Gu, Aditya Sadhanala, Vijay Venugopalan, Akshay Rao
Slow Carrier Cooling in Hybrid Pb–Sn Halide Perovskites
published pages: 736-740, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.9b00251
ACS Energy Letters 4/3 2020-03-23
2019 Christoph Schnedermann, Jooyoung Sung, Raj Pandya, Sachin Dev Verma, Richard Y. S. Chen, Nicolas Gauriot, Hope M. Bretscher, Philipp Kukura, Akshay Rao
Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
published pages: 6727-6733, ISSN: 1948-7185, DOI: 10.1021/acs.jpclett.9b02437
The Journal of Physical Chemistry Letters 10 2020-03-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOEASCOPY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOEASCOPY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More