Opendata, web and dolomites

NanoEAscopy

Mapping Nanoscale Charge Separation at Heterojunctions with Ultrafast Electroabsorption Microscopy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoEAscopy project word cloud

Explore the words cloud of the NanoEAscopy project. It provides you a very rough idea of what is the project "NanoEAscopy" about.

pump    resolution    separation    nanostructured    oscs    excitons    defects    optoelectronic    group    charge    spectroscopic    diodes    surface    charges    ps    microscopy    lattice    expertise    combined    possess    materials    local    molecular    segregation    structure    hole    2d    form    pvs    elucidate    promise    correlate    bound    electro    cs    variation    films    transfer    absorption    photodetectors    strain    composition    quasiparticles    variations    primary    organic    interaction    quantify    attempting    sub    thin    dissociate    transient    optical    image    electronic    photophysics    timescales    passivation    photoexcitations    coulomb    platform    oe    semiconductors    packing    ea    sites    ultrafast    host    length    emitting    micro    probe    inhomogeneity    leds    electrons    time    microscopes    100fs    timescale    stand    technique    light    crystallinity    detect    correlation    scales    10fs    recombine    defect    heterojunctions    spatial    data    photovoltaics    made    spectroscopy   

Project "NanoEAscopy" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.rao.oe.phy.cam.ac.uk/Research/Nanoscale
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Nanostructured electronic materials e.g. organic semiconductors (OSCs) and 2D semiconductors offer great promise for applications in optoelectronic (OE) devices, such as photovoltaics (PVs), light emitting diodes (LEDs) and photodetectors. The primary photoexcitations in both OSCs and 2D semiconductors are strongly bound excitons, quasiparticles of electrons and hole bound by the Coulomb interaction. Three aspects of these materials stand out when attempting to study photophysics of these materials. (1) Many of the crucial OE process in these systems occur at heterojunctions between p- and n-type materials, where charges recombine to form excitons and excitons dissociate to form charges. (2) The timescale for many such process is sub-ps, and charge transfer and charge separation (CS) can occur on sub-100fs timescales. (3) thin films made of these materials possess spatial inhomogeneity on µm and sub-µm length scales, due to variations in molecular packing, crystallinity and phase segregation in OSCs and due to lattice defects and variation in surface passivation and strain in 2D materials. No currently available technique has the ability to spatially correlate transient spectroscopic data with local molecular structure and composition. In order to do this, we will develop a new platform to directly image CS with sub-10fs time-resolution with sub-µm spatial resolution. Recent advances in pump-probe microscopy and ultrafast Electro-Absorption (EA) spectroscopy in the host’s group will be combined with the applicant’s expertise with optical microscopes and advanced data analysis methods to detect and quantify inhomogeneity. Novel analysis methods combined with an ultrafast EA pump-probe microscopy will allow for correlation of transient spectroscopic data with local molecular structure and composition. This will lead us to elucidate how CS is controlled by local properties such as molecular packing and crystallinity in OSCs and defect sites etc. in 2D semiconductors.

 Publications

year authors and title journal last update
List of publications.
2019 Sachin Dev Verma, Qifei Gu, Aditya Sadhanala, Vijay Venugopalan, Akshay Rao
Slow Carrier Cooling in Hybrid Pb–Sn Halide Perovskites
published pages: 736-740, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.9b00251
ACS Energy Letters 4/3 2020-03-23
2019 Christoph Schnedermann, Jooyoung Sung, Raj Pandya, Sachin Dev Verma, Richard Y. S. Chen, Nicolas Gauriot, Hope M. Bretscher, Philipp Kukura, Akshay Rao
Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale
published pages: 6727-6733, ISSN: 1948-7185, DOI: 10.1021/acs.jpclett.9b02437
The Journal of Physical Chemistry Letters 10 2020-03-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOEASCOPY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOEASCOPY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More