Opendata, web and dolomites

ASISA TERMINATED

Advanced Superlattice Infrared detectors for Space Applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ASISA project word cloud

Explore the words cloud of the ASISA project. It provides you a very rough idea of what is the project "ASISA" about.

material    ir    space    mu    observation    domain    route    plane    longwavelength    diana    mole    gasb    efforts    investments    climate    dependence    wavelength    physics    candidate    uk    cu    superlattice    successful    manufactured    spectral    hgcdte    university    law    bandgap    school    poor    huffaker    collaborators    12    focal    compound    array    fraction    semiconductor    government    companies    stage    engage    energy    cold    lambda    post    telluride    centre    launch    gt    commercialise    mid    tracking    materials    infrared    compositional    astronomy    newly    detectors    satellite    though    leverage    fellowship    outperform    proven    area    surveillance    inas    suffers    planck    stability    staff    ics    off    operability    laboratories    alternative    breakthrough    cadmium    earth    caused    welsh    managerial    industrial    detection    monitoring    object    cardiff    prof    longer    t2sl    cut    uniformity    vlwir    mercury    members   

Project "ASISA" data sheet

The following table provides information about the project.

Coordinator
CARDIFF UNIVERSITY 

Organization address
address: NEWPORT ROAD 30-36
city: CARDIFF
postcode: CF24 ODE
website: www.cardiff.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://notapplicable.com
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CARDIFF UNIVERSITY UK (CARDIFF) coordinator 183˙454.00

Map

 Project objective

In space, infrared detectors are used for many applications such as Earth observation, post-launch satellite tracking, space-object surveillance or climate monitoring. According to the Planck's law, cold object detection requires a material with a longer wavelength λ to address the Very LongWavelength InfraRed (VLWIR, λ > 12 μm) spectral domain. The current state-of-the-art includes the Mercury-Cadmium-Telluride (HgCdTe) material. Although, the HgCdTe technology is already well established and manufactured by many European companies, it suffers from poor uniformity, stability and operability at longer wavelength due to compositional issues caused by the strong dependence of the energy bandgap with the Cadmium mole fraction. Efforts have therefore been driven to develop alternative infrared materials such as the Type-II InAs/GaSb SuperLattice (T2SL) that can theoretically outperform the HgCdTe technology. Even though, the T2SL has proven to be a successful approach in the mid-IR and long-IR, extending the cut-off wavelength to the VLWIR range is a new challenge to take up. The VLWIR-T2SL technology will be developed in the newly-established Institute for Compound Semiconductor (ICS) laboratories at Cardiff University (CU). If successful, this fellowship will produce a real breakthrough in the field of infrared detectors. The VLWIR-T2SL technology has a strong industrial potential, the candidate will thus engage European collaborators in early stage to demonstrate a focal plane array. This will lead to a reliable route to commercialise devices through the newly-funded Compound Semiconductor Centre. This fellowship will leverage the large investments by the Welsh and UK government and CU in the general area of compound semiconductor. The candidate will have the managerial and technical support from Prof. Diana Huffaker, as well as staff members of ICS and the School of Physics and Astronomy.

 Publications

year authors and title journal last update
List of publications.
2019 M. Delmas, D. C. M. Kwan, M.C. Debnath, B. L. Liang, D. L. Huffaker
Flexibility of Ga-containing Type-II superlattice for long-wavelength infrared detection
published pages: , ISSN: 0022-3727, DOI:
Journal of Physics D: Applied Physics 2019-08-05
2018 M. Delmas, M.C. Debnath, B.L. Liang, D.L. Huffaker
Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors
published pages: 286-290, ISSN: 1350-4495, DOI: 10.1016/j.infrared.2018.09.012
Infrared Physics & Technology 94 2019-05-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ASISA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ASISA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More