Explore the words cloud of the CALCEAM project. It provides you a very rough idea of what is the project "CALCEAM" about.
The following table provides information about the project.
Coordinator |
UNIVERSITEIT UTRECHT
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2016-STG |
Funding Scheme | ERC-STG |
Starting year | 2017 |
Duration (year-month-day) | from 2017-08-01 to 2022-07-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITEIT UTRECHT | NL (UTRECHT) | coordinator | 1˙500˙000.00 |
Homogeneous catalysis is of prime importance for the selective synthesis of high added value chemicals. Many of the currently available catalysts rely on noble metals (Ru, Os, Rh, Ir, Pd, Pt), which suffer from a high toxicity and environmental impact in addition to their high cost, calling for the development of new systems based on first-row transition metals (Mn, Fe, Co, Ni, Cu). The historical paradigm for catalyst design, i.e. one or more donor ligands giving electron density to stabilize a metal center and tune its reactivity, is currently being challenged by the development of acceptor ligands that mostly withdraw electron density from the metal center upon binding. In the last decade, such ligands – mostly based on boron and heavier main-group elements – have evolved from a structural curiosity to a powerful tool in designing new reactive units for homogeneous catalysis. I will develop a novel class of ligands that use C=E (E=O, S, NR) multiple bonds anchored in close proximity to the metal by phosphine tethers. The electrophilic C=E multiple bond is designed to act as an acceptor moiety that adapts its binding mode to the electronic structure of reactive intermediates with the unique additional possibility of involving the lone pairs on heteroelement E in cooperative reactivity. Building on preliminary results showing that a C=O bond can function as a hemilabile ligand in a catalytic cycle, I will undertake a systematic, experimental and theoretical investigation of the structure and reactivity of M–C–E three membered rings formed by side-on coordination of C=E bonds to a first-row metal. Their ability to facilitate multi-electron transformations (oxidative addition, atom/group transfer reactions) will be investigated. In particular, hemilability of the C=E bond is expected to facilitate challenging C–C bond forming reactions mediated by Fe and Ni. This approach will demonstrate a new conceptual tool for the design of efficient base-metal catalysts.
year | authors and title | journal | last update |
---|---|---|---|
2020 |
Pablo M. Pérez−GarcÃa, Andrea Darù, Arthur R. Scheerder, Martin Lutz, Jeremy N. Harvey, Marc-Etienne Moret Oxidative Addition of Aryl Halides to a Triphosphine Ni(0) Center to Form Pentacoordinate Ni(II) Aryl Species published pages: , ISSN: 0276-7333, DOI: 10.1021/acs.organomet.0c00060 |
Organometallics | 2020-04-15 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CALCEAM" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CALCEAM" are provided by the European Opendata Portal: CORDIS opendata.