Opendata, web and dolomites

ViMoAct SIGNED

Modelling cortical information flow during visuomotor adaptation as active inference in the human brain

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ViMoAct project word cloud

Explore the words cloud of the ViMoAct project. It provides you a very rough idea of what is the project "ViMoAct" about.

prediction    meg    movement    generalised    explains    tracking    either    principles    manipulated    suppression    instructed    mr    recent    investigation    cognitive    manual    bodily    formal    visual    modelled    data    exchange    fmri    follows    belief    cortical    endogenous    updating    visuomotor    bayesian    relative    noise    movements    public    experimentally    close    proprioceptive    move    sensory    requiring    free    precision    assumption    hemodynamic    coding    predictive    predicted    relies    representation    generative    causal    model    delayed    levels    bayes    visuoproprioceptive    perform    contribution    motor    determines    allocation    function    optimal    previously    stimulus    compatible    attentional    suggests    dynamic    error    thereby    world    updated    glove    weighting    actions    spectral    brain    energy    hierarchy    self    multiple    conflicts    experiments    gap    predictions    active    empirical    flow    tested    environment    filtering    optimise    lacks    hierarchical    errors    virtual    photorealistic    models    feedback    experiment    interdisciplinary    appeals    inference   

Project "ViMoAct" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2020-05-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Recent research suggests that to control bodily movements the brain relies on Bayes-optimal predictive models that are updated by sensory prediction error. This assumption may be generalised within a new formal account of motor control as active (Bayesian) inference. Active inference explains motor control in terms of hierarchical Bayesian filtering or predictive coding, i.e., as belief updating and suppression of prediction error to optimise a hierarchical generative model in the brain; thereby the weighting of prediction errors by their predicted precision determines their relative impact on hierarchical inference. This novel proposal still lacks concrete empirical investigation. The proposed project will close this research gap by testing whether cortical information flow during manual actions, requiring visuomotor adaptation and cognitive control of attention, follows the principles of active inference. In two fMRI experiments and one MEG experiment, participants will move a photorealistic virtual hand model via an MR-compatible data glove to perform simple manual tracking tasks in a virtual reality environment. The precision of prediction errors at multiple levels of a previously established cortical motor control hierarchy will be experimentally manipulated via visuoproprioceptive conflicts (introduced by delayed visual movement feedback) and via attentional allocation – either stimulus-driven (via increased sensory noise) or endogenous (instructed) – to visual or proprioceptive movement feedback. Active inference’s specific predictions about information flow between and within cortical areas will be tested with recently established dynamic causal modelling of the modelled hemodynamic (fMRI) or spectral (MEG) responses. Active inference appeals to a general free-energy principle of brain function; this contribution will thus promote interdisciplinary exchange of knowledge about self- and world-representation in the brain and will be of general public interest.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VIMOACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VIMOACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

PaSION (2018)

A longitudinal assessment of treatment experience, symptoms and potential associations with biomarkers in cancer patients undergoing immune checkpoint inhibitor therapy

Read More  

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More