Opendata, web and dolomites

Io-EMP

Tissue-derived acellular micro-scaffold technology reducing or eliminating diabetics’ dependence oninsulin therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Io-EMP project word cloud

Explore the words cloud of the Io-EMP project. It provides you a very rough idea of what is the project "Io-EMP" about.

pancreas    medical    seeded    kidneys    80    24hrs    performance    mn    worldwide    prepare    tissue    environment    properly    stromal    life    autoimmune    destruction    150    cells    basic    14    complications    architecture    t1dm    therapy    diabetes    scaffold    extend    70    betalin    damage    gases    chronic    naked    nutrients    alone    attempt    connective    regime    function    diagnosed    with    functioning    eliminate    bn    premature    house    pancreatic    millions    immunosuppression    proprietary    uncertain    micro    income    prevent    disease    stop    islets    treatment    injecting    nerves    daily    free    harvesting    careful    lifestyle    producing    almost    platform    clusters    appropriate    afflicted    organ    transplantation    recipients    people    insulinproducing    death    researched    beta    lost    mitigate    procedure    followed    immediately    microns    onset    cadavers    diabetics    composition    annually    preserve    mission    10    unstable    dependence    cell    lifetime    acellular    cardiovascular    scaffolds    reduce    stroma    source    transplanted    17    harvested    insulin    premise    eyes    islet   

Project "Io-EMP" data sheet

The following table provides information about the project.

Coordinator
BETALIN THERAPEUTICS LTD 

Organization address
address: 3 MENACHEM BEGIN
city: RAMAT GAM
postcode: 5268101
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website http://www.betalintherapeutics.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.5. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing)
2. H2020-EU.2.1.3. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BETALIN THERAPEUTICS LTD IL (RAMAT GAM) coordinator 50˙000.00

Map

 Project objective

Betalin’s mission is to provide a tissue-derived acellular micro-scaffold that will extend the life and the insulin-producing performance of transplanted beta cells in order to reduce or eliminate the dependence of some diabetics on insulin therapy. Type 1 Diabetes is a chronic disease that results from the autoimmune destruction of the insulin-producing beta cells in the pancreas. Its cause is still uncertain and there is no known way to prevent its onset. With~70,000 new cases diagnosed each year, it is estimated that ~17 mn people worldwide are afflicted with T1DM. In the US alone, T1DM results in $14.4 bn in medical costs and lost income annually. Type 1 diabetics face a lifetime regime of insulin therapy and very careful lifestyle management in an attempt to mitigate the long-term complications associated with T1DM such as cardiovascular disease, damage to the eyes, kidneys and nerves, and premature death. In recent years islet transplantation has been researched as a treatment for T1DM. The procedure involves injecting millions of islets (the pancreatic cell clusters that “house” the insulinproducing beta cells) harvested from cadavers, followed by immunosuppression therapy. Islet transplantation is a promising approach but the naked islets are very unstable: they must be transplanted almost immediately after harvesting and up to 80% of the transplanted islets stop functioning within 24hrs. The result is that, after five years, less than 10% of the recipients are free of daily insulin treatment. Betalin’s technology is based on the premise that in order for beta cells to function properly it is necessary to provide an appropriate stromal (connective tissue) micro-environment. The proprietary platform technology is a method to prepare acellular organ-derived micro-scaffolds that preserve the architecture and the basic composition of organ stroma and ensure that no seeded cell will be more than 150 microns from a source of nutrients and gases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IO-EMP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IO-EMP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.;H2020-EU.2.1.3.;H2020-EU.2.3.1.;H2020-EU.2.1.2.)

SUPPLEPRINT (2018)

Super Productive Line Printing Inkjet

Read More  

Gri3D (2018)

The industrialization and market entry of a novel bioengineered hydrogel grid to standardize stem cell cultures for precision medicine.

Read More  

CGM (2018)

A next generation nano media tailored to capture and recycle hazardous micropollutants in contaminated industrial wastewater.

Read More