Opendata, web and dolomites

AXO-MATH SIGNED

Imaging and analyzing dynamics of reward-related long-range axons during decision-making in behaving mice

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AXO-MATH project word cloud

Explore the words cloud of the AXO-MATH project. It provides you a very rough idea of what is the project "AXO-MATH" about.

encode    preference    basolateral    tools    animal    math    schizophrenia    autism    synaptic    stage    prevention    critical    largely    unprecedented    dorsal    neuropsychiatric    positively    mechanisms    receiving    valuation    modern    investigates    significantly    host    abuse    genetic    maladaptive    action    unknown    volumes    context    switch    data    sensory    dynamically    human    axons    hypothesize    ventral    interdisciplinary    micrometer    model    amygdala    vivo    anatomical    neuronal    pfc    extraction    input    network    relationship    neuroscience    treatment    analytical    learning    lack    function    image    functional    participate    multidisciplinary    disorders    diseases    viral    regions    initial    nucleus    neuroeconomics    projections    brain    automatic    behaving    microscopy    precise    expert    dynamics    society    accuracy    shape    combination    decision    substance    tegmental    mice    behaviors    handle    thanks    hub    seamless    images    characterization    original    modulated    axonal    final    axo    area    plasticity    expertise    mathematical    substrates    deciphering    obsessive   

Project "AXO-MATH" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 185˙076.00

Map

 Project objective

Decision-making is a crucial brain function which neuronal substrates are largely unknown. Deciphering those mechanisms is critical for the prevention and the treatment of brain diseases as decision-making is maladaptive in many neuropsychiatric disorders (obsessive behaviors, schizophrenia, autism, substance abuse); it would also significantly advance neuroeconomics and therefore positively impact society. AXO-MATH (MATHematical analysis of AXOnal projections) investigates the neuronal mechanisms involved in decision-making in behaving mice using interdisciplinary approaches and state-of-the-art methods. We hypothesize that a final step before the action is taken is implemented in the dorsal PFC as it is an anatomical hub receiving projections from both sensory areas and regions believed to participate in choice valuation, such as the ventral tegmental area and the basolateral nucleus of the amygdala. Using an original combination of advanced microscopy and genetic and viral tools, we will image the activity of those long-range axons in two conditions: while the expert animal is taking a choice, and during the stage of preference learning. Precise measures will allow us to test a model in which projections from the amygdala to the PFC encode choice values and can be dynamically modulated as a function of the context by the ventral tegmental area to switch preference. The characterization accuracy will be unprecedented thanks to the design of new analytical tools - the initial expertise of the applicant. We propose novel mathematical methods tailored to the automatic extraction of complex-shape and micrometer-scale features of synaptic activity in in vivo microscopy images; they lack human input and can handle large volumes of data. By a seamless combination of the host and applicant multidisciplinary expertise we will address the relationship between synaptic network dynamics and functional brain plasticity which is a major challenge in modern neuroscience.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AXO-MATH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AXO-MATH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More