Explore the words cloud of the CONSEQUENT project. It provides you a very rough idea of what is the project "CONSEQUENT" about.
The following table provides information about the project.
Coordinator |
UNIVERSITAT WIEN
Organization address contact info |
Coordinator Country | Austria [AT] |
Total cost | 261˙208 € |
EC max contribution | 261˙208 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2018 |
Duration (year-month-day) | from 2018-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITAT WIEN | AT (WIEN) | coordinator | 261˙208.00 |
2 | PRESIDENT AND FELLOWS OF HARVARD COLLEGE | US (CAMBRIDGE) | partner | 0.00 |
This proposal aims at the first investigation and utilization of nonlinear interactions between mechanical vibrational modes, i.e phonons. These phonons will be excited, controlled and measured through their interaction with light in optomechanical crystals, which are designed and made by means for nano-fabrication techniques. Optomechanical crystals have shown powerful applications in electronics, as they are resonant at GHz frequencies, commonly used in electronic signal processing. Furthermore, mechanical oscillators, when cooled to few phonons, exhibit quantum mechanical properties, which can be exploited for quantum information processing. Limiting factors for both classical and quantum applications, however, are the high optical absorption and low thermal conductivities of common materials used for optomechanical crystals, such as silicon nitride. Diamond on the other hand has a two-orders of magnitude higher thermal conductivity and better mechanical properties than silicon nitride. These unique features enable the excitation of extremely high phonon intensities and coherent laser-like mechanical oscillations, as recently demonstrated by the outgoing host. While lasers gave birth to the field of nonlinear optics, one of the largest research fields in physics, the high intensity and coherent phonon oscillations in diamond enable for the first time the investigation of nonlinear phonon interactions. The aim of this project is to conduct the first characterization of nonlinear phonon interactions, thereby opening-up the new research-field of Nonlinear Optomechanics. These nonlinear interactions will then be used for novel classical and quantum functionalities. In particular, nonlinear phonon gain and energy transfer between different frequency modes will be investigated with applications in electronics, while nonlinear coupling between frequency modes will enable controllable superposition in phonon quantum states.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CONSEQUENT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CONSEQUENT" are provided by the European Opendata Portal: CORDIS opendata.