Opendata, web and dolomites

4D STENT TERMINATED

4D shape memory polymers via microstereolithography for production of thermally responsive stents

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 4D STENT project word cloud

Explore the words cloud of the 4D STENT project. It provides you a very rough idea of what is the project "4D STENT" about.

degradable    utilize    ring    dove    endothelial    vessel    health    disruptive    bulk    background    chemistries    stent    strokes    expertise    medical    18    dr    cells    disease    possessing    homer    world    tailor    opening    recruit    implant    ultimately    printed    thiol    polymers    technological    biomaterials    device    market    potentially    catheter    memory    attacks    materials    mechanical    biocompatibility    heart    reactions    photopolymerization    post    engineer    made    clinical    poor    metal    life    practical    cardiovascular    globe    quality    cylindrical    prototypes    stents    orthogonally    site    techniques    prof    biomaterial    engineering    manufacturing    synthetic    4d    epoxide    people    biocompatible    surgical    tube    surfaces    cvd    shift    delivered    preventing    weems    limited    disrupt    commercial    combine    give    severely    shape    superior    globally    bio    degradation    million    ene    surface    vanniasinkam    stenting    citizens    polymerization    polymer    yielding    possess    degradability    entities    biofouling    organization    simulatenously    restricted    material    microstereolithography    compressed    relevance    click    treatment    andrew    contemporary    nearly   

Project "4D STENT" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 183˙454.00

Map

 Project objective

Cardiovascular disease (CVD) affects nearly 18 million people globally (World Health Organization) as a result of heart attacks and strokes. The current treatment for CVD includes opening the restricted vessel through the use of stenting with a cylindrical tube made of a biocompatible metal or polymer, compressed and delivered by a catheter to the implant site. However, contemporary stents are severely limited as a result of poor biocompatibility, degradability, and manufacturing techniques. The 4D Stent project will utilize microstereolithography to produce biomaterials with controlled surface chemistries, bulk material properties, and possessing shape memory to give rise to 4D biomaterials, a potentially disruptive technological shift in medical device engineering. The produced stents will possess shape memory, controlled degradation and mechanical properties, and can be produced rapidly through photopolymerization. Thiol-ene click reactions, along with epoxide ring opening reactions, will be used to tailor biomaterial chemistries and engineer spatially-controllable printed prototypes, ultimately yielding stent surfaces that can be bio-orthogonally tailored to simulatenously recruit endothelial cells while preventing biofouling, all as post-polymerization processing. Here, Andrew Weems will combine his background in biomaterials engineering of shape memory materials with the synthetic expertise of Prof. Andrew Dove in the field of degradable polymers, and the practical cardiovascular surgical knowledge of Dr. Homer-Vanniasinkam to produce 4D stents of clinical relevance. Ultimately, 4D STENT has the potential to disrupt the medical device market, providing superior clinical support to European citizens and commercial entities by improving quality of life around the globe.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "4D STENT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "4D STENT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More