Opendata, web and dolomites

EpiBarrier SIGNED

Control of the blood-brain barrier integrity during seizures via the ATP-gated P2X7 receptor

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EpiBarrier project word cloud

Explore the words cloud of the EpiBarrier project. It provides you a very rough idea of what is the project "EpiBarrier" about.

protects    disruption    atp    cell    edge    models    paid    gated    players    play    disease    progression    separating    receptor    rna    function    signaling    molecules    responsiveness    permeability    epileptogenesis    opening    disorder    maintaining    bloodstream    date    animal    expressed    hemorrhage    pathophysiological    chronic    treatment    interleukin    disturbances    borne    pertinent    seizures    status    inflammation    strategies    epilepticus    newly    homeostasis    sequencing    brain    bbb    cns    transgenic    functional    imaging    continuous    techniques    integrity    antagonism    p2x7    network       vasculature    seizure    cells    compounds    emphasis    leakage    pathology    blood    purinergic    impacts    prevent    drugs    dysfunction    effect    consequently    cutting    dependent    earliest    intracerebral    neurological    50    forming    people    cellular    damaging    epileptogenic    genes    inflammatory    epilepsy    beta    toxic    decade    cerebral    regulated    ing    barrier    immune    anti    million    epileptic    entry    endothelial    types    downstream    gained   

Project "EpiBarrier" data sheet

The following table provides information about the project.

Coordinator
ROYAL COLLEGE OF SURGEONS IN IRELAND 

Organization address
address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2
website: www.rcsi.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 175˙866 €
 EC max contribution 175˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ROYAL COLLEGE OF SURGEONS IN IRELAND IE (DUBLIN) coordinator 175˙866.00

Map

 Project objective

Epilepsy is the most common chronic neurological disorder, affecting ~50 million people. Major challenges in epilepsy include non-responsiveness to treatment and no effect on disease progression provided by anti-epileptic drugs. Over the past decade, particular attention has been paid to dysfunction of cerebral vasculature and inflammatory processes as important players in epileptogenic processes, with a specific emphasis on failure of the blood–brain barrier (BBB). The BBB is a complex cellular network forming a continuous cellular barrier separating the CNS from the bloodstream. A functional BBB is crucial in maintaining brain homeostasis and to prevent the entry of toxic compounds and immune cells into the CNS. During pathology, however, the permeability of the BBB may increase with the resulting entry into the CNS of blood-borne molecules and cells. Leakage of the BBB is one of the earliest characteristic pathophysiological disturbances following status epilepticus and may play an important role in the development of epilepsy. Consequently, drugs targeting BBB function may represent novel treatment strategies in epilepsy. The purinergic ATP-gated P2X7 receptor has gained much attention recently as novel target in the treatment of epilepsy. Expressed on all cell types in the CNS including endothelial cells, P2X7 has been associated with numerous damaging processes pertinent to epileptogenesis, such as inflammation and opening of the BBB. ATP and the P2X7 downstream target Interleukin-1β contribute to the disruption of the BBB and P2X7 antagonism protects against BBB disruption during intracerebral hemorrhage. To date, however, we do not know whether seizure-induced changes of the BBB are dependent on P2X7 signaling, and whether this process can be targeted. By using newly developed transgenic animal models, RNA sequencing and cutting edge imaging techniques we will determine how P2X7 impacts on BBB integrity during seizures and what genes are regulated by P2X7.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EPIBARRIER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EPIBARRIER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More