Opendata, web and dolomites

ELECTRO-POM

From discovery to scale up of cluster based electrolytes for Ultra-high energy storage flow batteries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ELECTRO-POM project word cloud

Explore the words cloud of the ELECTRO-POM project. It provides you a very rough idea of what is the project "ELECTRO-POM" about.

innovation    dramatically    fuel    wh    species    times    outcome    least    energy    redox    cell    metal    renewables    showing    rfbs    unexpected    grant    converted    active    electricity    eager    co    vanadium    restricting    spin    intelligence    rfb    discovered    magnitude    electrons    pom    molecules    utilize    depending    technologies    electric    heart    20    electrolyte    smart    advantageous    licence    recharged    breaking    replacing    batteries    discovery    molecule    tested    giving    stability    beat    kg    cars    gt    device    battery    material    store    glasgow    company    oxide    critically    electro    companies    university    reversibly    back    expansion    limited    instance    chemical    point    1000    convert    customers    molecular    flow    astrea    ground    artificial    erc    act    found    storage    electrical    polyoxometalate    density    multinational    demands    translating    poor    generation    again    electron    large    power    clusters   

Project "ELECTRO-POM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-PoC
 Funding Scheme ERC-POC
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 150˙000.00

Map

 Project objective

Large scale energy storage demands are set to increase dramatically during the next years due to the expansion of renewables. One of the most promising large-scale electrical storage technologies are Redox Flow Battery (RFB) systems, which can convert electrical energy to chemical energy and back again. Here the electrolyte is an electro-active species where the chemical energy is converted to electricity in a flow cell. RFBs can act as both batteries and a fuel generation device depending on the needs of the user, which is advantageous because they can be recharged without replacing the electro-active material. The vanadium RFB is a promising technology, but is critically limited by only being able to store one electron per species giving a low energy density (~20 W h kg-1) and poor stability restricting many applications.

Using the artificial intelligence driven discovery system of the ERC Advanced Grant SMART-POM, we aimed at the discovery of new metal oxide molecular polyoxometalate (POM) clusters showing unexpected properties. For instance, we found a molecule that can store > 10 times more electrons reversibly than the vanadium RFB making these the molecules the most reduced molecules ever discovered. Here we want to make a major step in translating this ground-breaking outcome of SMART-POM from discovery of new clusters, to scale up so the molecule can be tested in a flow battery device set up. The heart of any flow battery is the electron storage redox electrolyte. The more electrons the electrolyte can store reversibly the higher the energy density and we aim here to beat the state of the art by at least an order of magnitude aiming >1000 Wh L-1 (at this point applications in electric cars are possible). We will licence the technology with the University of Glasgow spin out company, Astrea Power, as a partner to co-develop the innovation with several potential multinational companies as customers who are eager to utilize the technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTRO-POM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTRO-POM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More  

AdaptiveResponse (2018)

The evolution of adaptive response mechanisms

Read More  

EAST (2020)

Using Evolutionary Algorithms to Understand and Secure Web/Enterprise Systems

Read More