Opendata, web and dolomites

OSCILLOGEL SIGNED

An enzyme-based self-oscillating gel

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OSCILLOGEL project word cloud

Explore the words cloud of the OSCILLOGEL project. It provides you a very rough idea of what is the project "OSCILLOGEL" about.

lifts    stress    source    stimuli    chemistry    living    generally    regulatory    continual    mechano    fresh    valve    vice    understand    lacks    lacking    itself    obtain    versa    oscillator    elasticity    dynamic    functions    synthetic    collective    corresponding    subsystems    transport    load    individually    off    oscillatory    gel    responsive    periodicity    attributed    underlying    engineer    force    uniform    components    differentiation    urease    loops    motion    interdependence    biochemical    drive    external    though    material    biochemistry    coupled    exploring    pull    oscillation    environment    shrinks    fit    constant    continuous    energy    self    diffusion    autonomous    property    power    clue    emerges    mechanical    swells    inconvenience    maintained    wish    biological    chemical    enzyme    hydrogel    reaction    forwards    big    flow    found    eliminated    popular    periodic    feedback    counterintuitive    biologically    rigid    chemoresponsive    intrinsic    structural    unreacted    mostly    lowers    immobilized    insufficiently    models    opening    reactants    merely    biocompatible    closing    inorganic    release    morphogenesis    reactions    urea    operated    first    arise    motility    mechanics    linked   

Project "OSCILLOGEL" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 183˙454.00

Map

 Project objective

Self-oscillation is a periodic motion generated and maintained by a source of power that lacks the corresponding periodicity. In living systems several periodic motility processes or structural differentiation arise with no on-off stimuli, merely under the continual flow-in and flow-out of material and energy. The popular synthetic dynamic models use oscillatory chemical reactions to drive the system, though in most real cases no underlying biochemical oscillator is found. One clue is in the interdependence of chemistry and mechanics (stress, elasticity, or transport). Periodicity is counterintuitive because it cannot be attributed to any of the subsystems individually: this property emerges only through the collective behaviour of the components, as a systems-level property. To understand biological systems, we need to understand how these properties and functions are generated and controlled. Feedback-loops between chemical and mechanical processes are intrinsic in morphogenesis, though mechano-chemical feedback is generally still lacking in synthetic systems. I build coupled reaction-diffusion-mechanics systems, where a chemoresponsive hydrogel swells and shrinks (and, e.g., lifts and lowers a load) in a constant and uniform unreacted chemical environment, with no external stimuli. The chemistry is not oscillatory in itself, that is, if the gel is rigid or insufficiently responsive. Previous systems (mostly with inorganic reactions) operated under the continuous flow of fresh reactants. This inconvenience would be eliminated by making a big step forwards to biochemistry, where the reaction is linked to an enzyme immobilized in the gel. First we wish to demonstrate such a biocompatible system with the urease-urea reaction. After exploring the operating conditions, this autonomous system could fit to engineer regulatory functions by opening-closing a valve or to obtain biologically meaningful chemical responses by applying a force (pull, release) and vice versa.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OSCILLOGEL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OSCILLOGEL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More