Opendata, web and dolomites

WOLBAKIAN SIGNED

Functional genetics of Wolbachia proliferation and protection to viruses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "WOLBAKIAN" data sheet

The following table provides information about the project.

Coordinator
FUNDACAO CALOUSTE GULBENKIAN 

Organization address
address: AVENIDA BERNA 45
city: LISBOA
postcode: 1000
website: www.igc.gulbenkian.pt

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙999˙500 €
 EC max contribution 1˙999˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2023-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACAO CALOUSTE GULBENKIAN PT (LISBOA) coordinator 1˙999˙500.00

Map

 Project objective

Wolbachia are arguably the most prevalent intracellular bacteria in animals, infecting filarial nematodes and up to 66% of arthropod species. Wolbachia are maternally transmitted and can induce a large range of strong phenotypes on their hosts. However, very little is known on how they induce these phenotypes and how they interact with the host at the molecular level. One main difficulty with this system is that Wolbachia have been genetically intractable. We will study how Wolbachia confers protection to viruses, a phenomenon that is currently being applied to fight dengue and Zika viruses. We also aim at understanding how these endosymbiont titres are regulated, a crucial aspect of their biology. We will identify host and Wolbachia genes that regulate these processes by performing classical genetic screens in Drosophila and develop a new method to perform a forward genetic screen in Wolbachia. Our previous analysis of natural variants of Wolbachia will also be extended in order to identify alleles associated with differential growth and antiviral protection. We will characterize candidate Wolbachia genes, from the previous analysis and current results in the lab, by performing a new method to obtain loss-of-function mutants in target Wolbachia genes. We will also focus on putative effector proteins of Wolbachia with the purpose of identifying cellular location, induced phenotypes, and host interacting proteins. Drosophila genes will be characterized by classical genetic methods in this model organism. The identification and characterization of Wolbachia and host genes involved in antiviral protection and Wolbachia proliferation will provide key insights to these basic biological problems. Moreover, the knowledge generated and new Wolbachia variants may have an application in the fight against arboviruses transmitted by mosquitoes and human diseases caused by filarial nematodes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WOLBAKIAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WOLBAKIAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More