Opendata, web and dolomites

DyNeRfusion SIGNED

Dynamic Network Reconstruction of Human Perceptual and Reward Learning via Multimodal Data Fusion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DyNeRfusion project word cloud

Explore the words cloud of the DyNeRfusion project. It provides you a very rough idea of what is the project "DyNeRfusion" about.

electrophysiological    neural    training    noisy    techniques    proposition    guided    characterization    single    empower    additional    share    reported    unified    error    learning    sensory    basis    data    considerable    fuse    behaviorally    understand    image    ambiguous    neurobiological    isolation    acquired    literature    decisions    whereby    despite    maximization    endogenous    market    domain    extends    modalities    inferred    spatiotemporal    reward    parametric    diagnose    betting    largely    prediction    improvements    previously    networks    facilitates    separate    mechanism    mechanisms    stimulus    predictors    uncover    representations    perceptual    power    eeg    efforts    simultaneously    stock    explanatory    trial    either    neuroimaging    inspired    lasting    fmri    multimodal    variability    lines    ultimate    divergent    mechanistic    ray    multivariate    primary    principles    probabilistic    respectively    machine    adaptive    actions    behavior    integrating    computational    framework    neuronal   

Project "DyNeRfusion" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙996˙043 €
 EC max contribution 1˙996˙043 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 1˙996˙043.00

Map

 Project objective

Training and experience can lead to long-lasting improvements in our ability to make decisions based on either ambiguous sensory or probabilistic information (e.g. learning to diagnose a noisy x-ray image or betting on the stock market). These two processes are referred to as perceptual and probabilistic/reward learning, respectively. Despite considerable efforts to uncover the neural systems involved in these processes, perceptual and reward learning have largely been studied in separate lines of research using divergent learning mechanisms. The primary aim of this proposal is to develop a unified framework for integrating these lines of research and understand the extent to which they share a common computational and neurobiological basis. Specifically, we will test the proposition that both the perceptual and reward systems could be understood in a common framework of “reward maximization”, whereby a domain-general reinforcement-guided learning mechanism – based on separate prediction error representations – facilitates future actions and adaptive behavior. To offer a comprehensive spatiotemporal characterization of the relevant networks and their computational principles we will adopt a state-of-the-art multimodal neuroimaging approach to fuse simultaneously-acquired EEG and fMRI data, via machine-learning-inspired multivariate single-trial analysis techniques and computational modelling. The project’s ultimate goal is to empower a level of neuronal and mechanistic understanding that extends beyond what could be inferred with each of these modalities in isolation. We will achieve this goal by exploiting endogenous trial-by-trial electrophysiological variability to build parametric fMRI predictors that can offer additional explanatory power than what can already be achieved by stimulus- or behaviorally-derived predictors, allowing us to go over and beyond what has been reported previously in the literature.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DYNERFUSION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DYNERFUSION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More