Opendata, web and dolomites

DyNeRfusion SIGNED

Dynamic Network Reconstruction of Human Perceptual and Reward Learning via Multimodal Data Fusion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DyNeRfusion project word cloud

Explore the words cloud of the DyNeRfusion project. It provides you a very rough idea of what is the project "DyNeRfusion" about.

modalities    facilitates    variability    improvements    betting    whereby    mechanistic    domain    mechanism    lines    single    learning    predictors    primary    neural    networks    ray    uncover    techniques    characterization    actions    despite    previously    inspired    parametric    principles    framework    training    considerable    basis    literature    eeg    isolation    efforts    separate    machine    ultimate    market    neuronal    reward    fuse    power    proposition    share    multivariate    mechanisms    data    probabilistic    unified    decisions    trial    integrating    stimulus    noisy    understand    simultaneously    sensory    prediction    neurobiological    maximization    fmri    extends    perceptual    divergent    electrophysiological    respectively    representations    behaviorally    diagnose    either    image    reported    ambiguous    largely    behavior    inferred    spatiotemporal    computational    neuroimaging    guided    stock    error    lasting    acquired    explanatory    adaptive    endogenous    multimodal    additional    empower   

Project "DyNeRfusion" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙996˙043 €
 EC max contribution 1˙996˙043 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 1˙996˙043.00

Map

 Project objective

Training and experience can lead to long-lasting improvements in our ability to make decisions based on either ambiguous sensory or probabilistic information (e.g. learning to diagnose a noisy x-ray image or betting on the stock market). These two processes are referred to as perceptual and probabilistic/reward learning, respectively. Despite considerable efforts to uncover the neural systems involved in these processes, perceptual and reward learning have largely been studied in separate lines of research using divergent learning mechanisms. The primary aim of this proposal is to develop a unified framework for integrating these lines of research and understand the extent to which they share a common computational and neurobiological basis. Specifically, we will test the proposition that both the perceptual and reward systems could be understood in a common framework of “reward maximization”, whereby a domain-general reinforcement-guided learning mechanism – based on separate prediction error representations – facilitates future actions and adaptive behavior. To offer a comprehensive spatiotemporal characterization of the relevant networks and their computational principles we will adopt a state-of-the-art multimodal neuroimaging approach to fuse simultaneously-acquired EEG and fMRI data, via machine-learning-inspired multivariate single-trial analysis techniques and computational modelling. The project’s ultimate goal is to empower a level of neuronal and mechanistic understanding that extends beyond what could be inferred with each of these modalities in isolation. We will achieve this goal by exploiting endogenous trial-by-trial electrophysiological variability to build parametric fMRI predictors that can offer additional explanatory power than what can already be achieved by stimulus- or behaviorally-derived predictors, allowing us to go over and beyond what has been reported previously in the literature.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DYNERFUSION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DYNERFUSION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More