Opendata, web and dolomites

BioMet SIGNED

Selective Functionalization of Saturated Hydrocarbons

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BioMet project word cloud

Explore the words cloud of the BioMet project. It provides you a very rough idea of what is the project "BioMet" about.

paradigm    organic    hydrogen    tremendously    raw    expense    migration    removal    weaker    trapping    favor    effect    represented    carbon    selective    distinguish    gas    always    logic    terminus    chemically    engaged    catalyzed    derivatives    architectures    subsequently    minus    chemical    hydrocarbons    constituents    activation    isomerize    hydrocarbon    metal    double    alkane    despite    rhodococcus    feedstock    formed    ing    invention    stronger    synthetic    benign    mutated    intermediates    preparation    functionalization    materials    first    performed    representing    chemistry    primary    strain    geometry    organometallic    sequence    alkanes    hydrometalation    saturated    natural    chemists    added    equivalent    inert    substrate    standard    skeleton    feedstocks    efficient    cheap    molecular    atoms    compounds    sciences    valorize    transformed    shift    selectively    converting    alkene    bond    functionalized    petroleum    electrophiles    species    secondary    reaction    remaining    position    ideally    environmentally    desired    synthesis    centuries    puzzled    bonds    variety   

Project "BioMet" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙499˙375 €
 EC max contribution 2˙499˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 2˙499˙375.00

Map

 Project objective

Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOMET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOMET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

DEEPTIME (2020)

Probing the history of matter in deep time

Read More