Explore the words cloud of the Resolve project. It provides you a very rough idea of what is the project "Resolve" about.
The following table provides information about the project.
Coordinator |
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 149˙187 € |
EC max contribution | 149˙187 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-PoC |
Funding Scheme | ERC-POC |
Starting year | 2018 |
Duration (year-month-day) | from 2018-07-01 to 2019-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN | DE (MUENCHEN) | coordinator | 149˙187.00 |
Since their invention, super-resolution microscopy approaches are starting to transform research in the life sciences by enabling spatial resolution below the classical diffraction limit of light. In order to establish super-resolution microscopy as a standard research tool in the life sciences, researchers need to be able to readily access the three main technological pillars of super-resolution microscopy: instrumentation, software, and labeling probes. To date, the instrumentation is typically a very costly and complex microscope that requires skilled personnel for its operation. The software is either a non-user-friendly, but freely available solution, or a pricey commercial option that comes together with the costly microscope. Finally, the commercially available labeling probes so far suffer from several shortcomings in terms of performance and their multiplexing capability. During the ERC-funded project MolMap, we developed novel solutions for all three technological pillars. We constructed a prototype for an affordable super-resolution microscope with an estimated cost of only a fraction of the price of currently available commercial options. In addition, we developed a novel and user-friendly software platform as well as customizable labeling probes for sequential imaging of a multitude of targets. Together, these developments have the potential to be integrated into a high-performance and affordable super-resolution platform to become standard in life science laboratories such as nowadays cell culture microscopes. The aim of this Proof-of-Concept proposal is to further optimize the three technologies and to adapt the fully integrated platform to market needs.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESOLVE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "RESOLVE" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreDiscovering a novel allergen immunotherapy in house dust mite allergy tolerance research
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More