Explore the words cloud of the HyArchi project. It provides you a very rough idea of what is the project "HyArchi" about.
The following table provides information about the project.
Coordinator |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 2˙498˙100 € |
EC max contribution | 2˙498˙100 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-ADG |
Funding Scheme | ERC-ADG |
Starting year | 2018 |
Duration (year-month-day) | from 2018-10-01 to 2023-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS | FR (PARIS) | coordinator | 2˙498˙100.00 |
Water is the most limiting environmental factor for agricultural production worldwide and climate change exacerbates this threat. The HyArchi project will address this issue from a plant biology perspective and proposes new strategies to improve crop tolerance to drought. The main objective is to optimize water uptake and transport in cereals affected by drought. HyArchi will target maize, a major crop and a foundational model in plant genetics and water relations that is grown in irrigation or rain-fed conditions. HyArchi will consider three root traits: root system architecture, generated through continuous growth and branching; water transport; and environmental signalling. The first two traits yield the root hydraulic architecture. HyArchi will investigate how this architecture evolves in time and space by integrating local and systemic signals that communicate water availability. HyArchi proposes two innovative molecular discovery approaches recently validated by my group in model plants. Genome-wide association studies will be used to uncover novel genes, with signalling functions acting on root hydraulics. Transcriptomic analyses of an experimental split-root system will be used to identify molecules (e.g. hormones, miRNAs) involved in systemic signalling and governing root growth and hydraulics. These studies will be supported by key methodological developments. A semi-automated set of pressure chambers will be constructed to measure root hydraulics in multiple genotypes under highly controlled local root environments. Improved root image analyses will be coupled to mathematical modelling to represent local and systemic effects of water on root hydraulic architecture. Ultimately, HyArchi will deliver enhanced knowledge on root water transport and its control by a set of new genes, with a description of their natural variation and impact on whole-plant drought responses. Importantly, this will allow introducing beneficial alleles into elite cultivars.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYARCHI" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "HYARCHI" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More