Explore the words cloud of the 3DTransducers project. It provides you a very rough idea of what is the project "3DTransducers" about.
The following table provides information about the project.
Coordinator |
UNIVERSITY OF STRATHCLYDE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 146˙334 € |
EC max contribution | 146˙334 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-PoC |
Funding Scheme | ERC-POC |
Starting year | 2018 |
Duration (year-month-day) | from 2018-07-01 to 2019-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITY OF STRATHCLYDE | UK (GLASGOW) | coordinator | 146˙334.00 |
Sensors are ubiquitous in the modern technological world. From the numerous sensors everyone carries within their smartphone, through the pervasive nature of sensors within human machines, to the oncoming explosion of the “Internet of Things” promising immense interconnected networks of sensor enabled systems in virtually every aspect of human life. Micro-electro-mechanical systems (MEMS) as silicon integrated circuits (ICs) are the base technology for nearly all such sensors. In 2017 the worldwide market for MEMS sensors was valued at 10.3€ Billion up from 8.5€ Billion in 2016. It is forecast to grow to 48.4€ Billion in 2024. The use of MEMS ICs provides large-scale manufacture of very cheap sensors. However, there are also many disadvantages. They do not easily provide for rapid and localised/distributed manufacture and implementation. Prototyping requires multi-user foundry platforms or the availability of local facilities, both of which can be relatively expensive, and time consuming, for short runs of prototypes. There are also limitations to what can be achieved. For example, it is very difficult and expensive to make 3D MEMS silicon structures, and there are many issues with liquid interfacing of such systems.
3D printing to make relatively small structures is not new, and various groups have recently reported functionalized polymers. This project will produce 3D printed transducers using 3D printing techniques from the SASATIN ERC project. The 3D printing arrangement does not rely on specific materials purchased from the printer manufacturer.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Benjamin Tiller, Andrew Reid, Botong Zhu, José Guerreiro, Roger Domingo-Roca, Joseph Curt Jackson, J.F.C. Windmill Piezoelectric microphone via a digital light processing 3D printing process published pages: 107593, ISSN: 0264-1275, DOI: 10.1016/j.matdes.2019.107593 |
Materials & Design 165 | 2020-03-05 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DTRANSDUCERS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "3DTRANSDUCERS" are provided by the European Opendata Portal: CORDIS opendata.