Opendata, web and dolomites

FREESPACE SIGNED

Free-space optical transmission links with unprecedented receiver sensitivity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FREESPACE" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 150˙000.00

Map

 Project objective

Free-space optical communication links provide higher capacity and smaller beam divergence than their radio-frequency counterpart, and are increasingly being used for relatively short links often established for temporary purposes (e.g. outdoor sporting and concert events). They are also explored for extremely long reaches (e.g. between satellites, to the moon and beyond). In both cases, the sensitivity is fundamentally limited by the effect of diffraction, which results in the divergence of a free-space beam as it travels from the transmitter to the receiver. As there are practical limits on the size of the aperture permitted at both the transmitter and receiver, the diffraction results in a signal loss that limits the capacity and reach of the link. Our approach, which is to implement a unique noiseless optical amplifier in the receiver, is expected to result in a 40% transmission reach extension, or for a given reach target, reduce the aperture size of the optics (significant cost reduction) and increase the capacity. Our technique will help enable the transition from radio-frequency links to lightwave based links as it add significant performance benefits to the latter approach. We wish to use our new knowledge and expertise from our recent ERC AdG project to demonstrate, verify, and explore the commercial prospects of FSO transmission using phase-sensitive amplifiers in the receiver to improve the sensitivity, thus maximizing the possible link power budget, beyond what is possible with today’s approaches. We will work on market evaluation, technology verification, and commercialization strategy with the support from the Chalmers innovation office on our campus which has expertize on commercialization in the early stage. A goal of this project is to reach an agreement with commercial and/or institutional entities to pursue a field test of the PSA-based FSO technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FREESPACE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FREESPACE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More