Opendata, web and dolomites

PlantOleogels SIGNED

Plant Particle based Hybrid Bicontinuous Oleogels

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PlantOleogels project word cloud

Explore the words cloud of the PlantOleogels project. It provides you a very rough idea of what is the project "PlantOleogels" about.

stability    simultaneous    leak    display    accounts    labels    made    technological    fraction    fats    glass    coexistence    billion    formulations    crystal    particle    biomaterials    rheology    first    create    termed    oleogel    oil    hardstock    despite    structure    prepared    classes    volume    food    meeting    starch    aggregation    temperature    condensed    cardiovascular    structuring    shear    burden    physical    quality    consumption    poor    colloidal    gel    oleogels    overcome    responsiveness    entrapped    210    deaths    economical    networks    soft    continue    unsaturated    types    substitution    diseases    prepare    natural    network    clean    differing    saturated    economic    dietary    particles    strategy    cellulose    schemes    expectations    death    plant    cvds    risk    continuous    seek    excellent    always    bicontinuous    hybrid    establishing    breakthroughs    solid    interpenetrated    relationships    gels    incorporate    form    brings    gelation    native    fat    separate    million   

Project "PlantOleogels" data sheet

The following table provides information about the project.

Coordinator
UNILEVER INNOVATION CENTRE WAGENINGEN BV 

Organization address
address: BRONLAND 14
city: WAGENINGEN
postcode: 6708 WH
website: www.unilever.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNILEVER INNOVATION CENTRE WAGENINGEN BV NL (WAGENINGEN) coordinator 165˙598.00

Map

 Project objective

Cardiovascular diseases (CVDs) continue to be the major cause of death in the EU, it accounts for over 1.8 million deaths and estimated economic burden of €210 billion a year to EU. One main dietary risk factor long associated with CVDs is the consumption of hardstock fats. Substitution of saturated fats by unsaturated fats is not always possible since it brings major technological challenges such as products that leak oil and have overall poor quality. To overcome this, a promising strategy is to promote oil gelation to form a type of soft condensed matter termed ‘oleogel’. Despite major breakthroughs in this field, there is a strong need for: creating oleogels derived from all-natural and economical biomaterials that display excellent rheology, shear stability and temperature-responsiveness, while meeting increasing consumer expectations for “clean” and natural labels and establishing structure-rheology relationships in such systems. This proposal aims to create novel hybrid oleogels using plant derived native cellulose- and starch- colloidal particles via two main soft matter approaches: colloidal glass-gel networks and bicontinuous gel with interpenetrated particle networks. Colloidal classes and gels are two types of colloidal systems, with differing structure and that display solid-like characteristics which we seek to exploit under these schemes. To incorporate temperature responsiveness, we will prepare oil continuous colloidal gel and glass in coexistence with fat crystal network. Such hybrid systems will be prepared by simultaneous addition of plant particles at high volume fraction and fat particles at low volume fraction (plant particles entrapped within the fat network), and gel-gel networks will be made by separate aggregation, first of the plant particles and then of fat particles. Structure, rheology, physical properties and phase behaviour will be investigated to identify formulations and soft matter systems with potential for food oil structuring.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLANTOLEOGELS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLANTOLEOGELS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More