Opendata, web and dolomites

PATHWISE SIGNED

Pathwise methods and stochastic calculus in the path towards understanding high-dimensional phenomena

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PATHWISE project word cloud

Explore the words cloud of the PATHWISE project. It provides you a very rough idea of what is the project "PATHWISE" about.

rely    adjacent    central    entropy    transportation    behavior    ideas    associate    kannan    dimensional    conjecture       introduction    tractable    isoperimetric    originating    lov    bodies    robustness    versions    works    jumps    managed    asz    inequality    thereof    theorems    simonovits    concepts    nonlinear    kernel    limit    noise    convexity    computer    theory    coauthors    notions    kls    extend    boolean    semigroup    quantities    connections    mathematics    deviations    relies    stochastic    mass    explore    object    hyperplane    concentration    inequalities    corresponding    gibbs    networks    few    particle    mean    first    conjectures    questions    distributions    hypercube    convex    space    former    variance    heat    calculus    quantitative    phenomena    free    tools    pathwise    interacting    stability    regularization    entropic    brunn    play    statistics    probability    minkowski    geometry    dimension    regarding    latter    science    symbiosis    hypercontractivity    progress    bounds    gaussian   

Project "PATHWISE" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙308˙188 €
 EC max contribution 1˙308˙188 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙308˙188.00

Map

 Project objective

Concepts from the theory of high-dimensional phenomena play a role in several areas of mathematics, statistics and computer science. Many results in this theory rely on tools and ideas originating in adjacent fields, such as transportation of measure, semigroup theory and potential theory. In recent years, a new symbiosis with the theory of stochastic calculus is emerging.

In a few recent works, by developing a novel approach of pathwise analysis, my coauthors and I managed to make progress in several central high-dimensional problems. This emerging method relies on the introduction of a stochastic process which allows one to associate quantities and properties related to the high-dimensional object of interest to corresponding notions in stochastic calculus, thus making the former tractable through the analysis of the latter.

We propose to extend this approach towards several long-standing open problems in high dimensional probability and geometry. First, we aim to explore the role of convexity in concentration inequalities, focusing on three central conjectures regarding the distribution of mass on high dimensional convex bodies: the Kannan-Lov'asz-Simonovits (KLS) conjecture, the variance conjecture and the hyperplane conjecture as well as emerging connections with quantitative central limit theorems, entropic jumps and stability bounds for the Brunn-Minkowski inequality. Second, we are interested in dimension-free inequalities in Gaussian space and on the Boolean hypercube: isoperimetric and noise-stability inequalities and robustness thereof, transportation-entropy and concentration inequalities, regularization properties of the heat-kernel and L_1 versions of hypercontractivity. Finally, we are interested in developing new methods for the analysis of Gibbs distributions with a mean-field behavior, related to the new theory of nonlinear large deviations, and towards questions regarding interacting particle systems and the analysis of large networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHWISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHWISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More