Opendata, web and dolomites

CUHL SIGNED

Controlling Ultrafast Heat in Layered materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CUHL" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA 

Organization address
address: CAMPUS DE LA UAB EDIFICI Q ICN2
city: BELLATERRA (BARCELONA)
postcode: 8193
website: www.icn.cat

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙475˙000 €
 EC max contribution 1˙475˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2023-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA ES (BELLATERRA (BARCELONA)) coordinator 1˙475˙000.00

Map

 Project objective

In this project I propose to take advantage of the enormous potential created by the recent material science revolution based on two-dimensional (2D) layered materials, by bringing it to the arena of nanoscale heat transport, where heat transport occurs on ultrafast timescales. This opens up a new research field of controllable ultrafast heat transport in layered materials. In particular, I will take advantage of the myriad of possibilities for miniature material and device design, with unprecedented controllability and versatility, offered by Van der Waals (VdW) heterostructures – stacks of different layered materials assembled on top of each other – and 1D systems of layered materials.

Specifically, I will introduce novel device geometries based on VdW heterostructures for passively and actively controlling phonon modes and thermal transport. This will be measured mainly using time-domain thermoreflectance measurements. I will also develop novel time-resolved measurement techniques to follow heat spreading and coupling between different heat carriers: light, phonons, and electrons. These techniques will be mainly based on time-resolved infrared/Raman spectroscopy and photocurrent scanning microscopy. Moreover, I will study one-dimensional layered materials and assess their thermoelectric properties using electrical measurements. And finally, I will combine these results into hybrid devices with a photoactive layer, in order to demonstrate how phonon control allows for tuning of electrical and optoelectronic properties.

The results of this project will have an impact on the major research fields of phononics, electronics and photonics, revealing novel physical phenomena. Additionally, the results are likely to be useful towards applications such as thermal management, thermoelectrics, photovoltaics and photodetection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CUHL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CUHL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More