Explore the words cloud of the GIDE project. It provides you a very rough idea of what is the project "GIDE" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙493˙382 € |
EC max contribution | 1˙493˙382 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (MUENCHEN) | coordinator | 1˙493˙382.00 |
Cortical interneurons are a diverse class of inhibitory neurons that play a particularly important role in the stability of the neural circuits underlying cognitive and higher order brain functions. A growing body of evidence suggests that perturbation of interneuron development can result in a variety of complex neuropsychiatric disorders, including autism, bipolar disorder, and schizophrenia. Thus, elucidating how interneurons develop and integrate into canonical brain circuits is crucial for understanding the brain in both health and disease.
During perinatal development, intrinsic and environmental processes cooperate to establish the adult form of brain connectivity and behaviour control. To elucidate the molecular mechanisms underlying these interactive processes, I propose to combine genetic fate-mapping techniques with high-throughput single-cell RNA sequencing technologies to gain a detailed understanding of neurogenesis at the cellular level and elucidate how an immense diversity of interneuron subtypes is generated (Aim 1). Furthermore, I will utilize a novel retroviral barcoding strategy to reveal how much of an interneuron’s fate is genetically predetermined by lineage within progenitor zones of the ventral forebrain (Aim 2). Finally, I will study the genetic mechanisms that enable cell intrinsic programs to be shaped by environmental activity-dependent processes during the critical window of development (Aim 3). Candidate genes resulting from these aims will be functionally characterized through gain of function and loss of function methods.
This proposal takes full advantage of my extensive training in viral and mouse genetic techniques, single-cell transcriptomic data processing, and in vivo manipulation of neuronal activity. I am confident that I will be able to successfully complete the proposed aims while exploring fascinating and long-standing questions of developmental neurobiology.
Data Management Plan (DMP) | Open Research Data Pilot | 2020-02-12 17:33:55 |
Take a look to the deliverables list in detail: detailed list of GIDE deliverables.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GIDE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "GIDE" are provided by the European Opendata Portal: CORDIS opendata.
Back to the Future: Future expectations and actions in late medieval and early modern Europe, c.1400-c.1830
Read MoreReprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space
Read MoreHD-MEA-based Neuronal Assays and Network Analysis for Phenotypic Drug Screenings
Read More