Explore the words cloud of the NEXT project. It provides you a very rough idea of what is the project "NEXT" about.
The following table provides information about the project.
Coordinator |
RIJKSUNIVERSITEIT GRONINGEN
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 1˙670˙323 € |
EC max contribution | 1˙670˙323 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2024-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | RIJKSUNIVERSITEIT GRONINGEN | NL (GRONINGEN) | coordinator | 1˙670˙323.00 |
The heaviest element which has been found in nature is uranium with 92 protons. So far, the elements up to atomic number 118 (oganesson) have been discovered in the laboratory. All transuranium elements are radioactive and their production rates decrease with increasing number of protons. An Island of Stability, where the nuclei have relatively long half-lives, is predicted at the neutron number 182 and, depending on the theoretical model, at the proton number 114, 120 or 126. Current experimental techniques do not allow to go so far to the neutron-rich side close to the Island of Stability. The observation of gravitational waves as well as electromagnetic waves originating from a neutron star merger has been published on October 16, 2017 and is a first proof of the nucleosynthesis of heavy elements in the r-process. It still remains an open question if superheavy nuclei have been formed in our universe. To answer these questions, we need insight into the nuclear properties of the heaviest elements and how these properties evolve when one moves toward to the neutron-rich side on the nuclear chart. In the NEXT project, I will set out to discover new, Neutron-rich, EXotic heavy nuclei using multi-nucleon Transfer reactions. I will measure their masses and, thus, pin down the ground state properties of these nuclei. These studies provide insight into the evolution of nuclear shells in the heavy element region. Furthermore, I will measure the fission half-lives of these isotopes. In order to realize the NEXT project, I will built a novel spectrometer, which is a combination of a solenoid separator and Multi-Reflection Time-of-Flight Mass Spectrometer. The broad experience in heavy element research and mass measurements that I have acquired over the years, and the unique infrastructure at my home institute that houses the AGOR accelerator, makes it so that I am ideally placed to start and lead the NEXT project.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEXT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEXT" are provided by the European Opendata Portal: CORDIS opendata.
Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space
Read MoreHD-MEA-based Neuronal Assays and Network Analysis for Phenotypic Drug Screenings
Read MoreA Single-Photon Source Featuring Unity Efficiency And Unity Indistinguishability For Scalable Optical Quantum Information Processing
Read More