Opendata, web and dolomites

LifeLikeMat SIGNED

Dissipative self-assembly in synthetic systems: Towards life-like materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LifeLikeMat project word cloud

Explore the words cloud of the LifeLikeMat project. It provides you a very rough idea of what is the project "LifeLikeMat" about.

sharp    whereby    time    oxidation    sophisticated    energy    nature    wp1    healing    designed    intrinsically    inorganic    serve    dynamic    stable    fuels    waste    predominantly    camouflage    entropy    industries    exchange    exist    static    wp3    organic    operate    foundations    designing    reactions    found    equilibrium    rationally    owing    living    disassembly    fabricate    methanol    materials    conductivity    gives    building    modes    dissipative    man    external    contrast    employ    stored    spontaneously    self    unstable    inherently    purpose    homeostasis    classes    conversion    closer    colloidal    consumption    ubiquitous    principles    sugars    pharmaceutical    exhibit    tunable    lifetimes    followed    drive    ultimate    made    organisms    assembled    electrical    integrating    lay    constructs    continuous    blocks    activated    assembly    polymerization    synthetic    sectors    nearly    dependent    structures    convert    conceive    thermodynamic    varied    chemical    unconventional    co2    wp2   

Project "LifeLikeMat" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙999˙572 €
 EC max contribution 1˙999˙572 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙999˙572.00

Map

 Project objective

'Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in 'chemical fuels', which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.

The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.

Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.

The proposed studies will lead to new classes of 'driven' materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIFELIKEMAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIFELIKEMAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ModGravTrial (2019)

Modified Gravity on Trial

Read More  

MuFLOART (2018)

Microbiological fluorescence observatory for antibiotic resistance tracking

Read More  

ImmUne (2019)

Towards identification of the unifying principles of vertebrate adaptive immunity

Read More