Opendata, web and dolomites

LifeLikeMat SIGNED

Dissipative self-assembly in synthetic systems: Towards life-like materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LifeLikeMat project word cloud

Explore the words cloud of the LifeLikeMat project. It provides you a very rough idea of what is the project "LifeLikeMat" about.

serve    conversion    sectors    unconventional    activated    external    drive    thermodynamic    wp3    constructs    assembled    polymerization    stored    materials    chemical    structures    made    living    closer    ubiquitous    principles    spontaneously    reactions    unstable    conductivity    exhibit    designed    assembly    synthetic    sophisticated    self    continuous    conceive    owing    wp2    lifetimes    oxidation    organic    fuels    industries    convert    waste    disassembly    contrast    fabricate    predominantly    inorganic    dependent    followed    exchange    sharp    varied    tunable    blocks    static    employ    exist    healing    building    modes    homeostasis    lay    inherently    equilibrium    nature    foundations    co2    sugars    integrating    electrical    designing    whereby    pharmaceutical    gives    wp1    operate    man    organisms    entropy    found    purpose    intrinsically    colloidal    energy    camouflage    classes    consumption    stable    dynamic    methanol    dissipative    time    rationally    ultimate    nearly   

Project "LifeLikeMat" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙999˙572 €
 EC max contribution 1˙999˙572 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙999˙572.00

Map

 Project objective

'Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in 'chemical fuels', which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.

The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.

Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.

The proposed studies will lead to new classes of 'driven' materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIFELIKEMAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIFELIKEMAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More  

TRUST (2018)

Truth and Semantics

Read More