Opendata, web and dolomites

SensifAI SIGNED

Understanding Videos Automatically with the SensifAI Deep Learning Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SensifAI project word cloud

Explore the words cloud of the SensifAI project. It provides you a very rough idea of what is the project "SensifAI" about.

minute    imaging    contents    oem    million    acquired    eth    automatically    delivers    visually    accumulative    audio    content    scene    automated    mobile    05    01    alumni    equipped    ranging    became    unsafe    music    edge    marketplace    visual    leuven    scientists    texts    pricing    moods    speech    millions    objects    tag    trillion    starting    logos    software    landmarks    helping    aurally    celebrities    tagging    cloud    model    accurately    contextual    actions    description    limited       believe    deep    sensifai    sport    mit    searchable    119    recognition    images    europeans    microphone    services    founded    involvement    bvba    captured    zurich    recognize    recognizes    day    video    impaired    emerge    trained    ku    describing    wearable    learning    environment    imagine    cutting    surrounding    customized    audios    camera    manually    smartphones    amazon    data    videos    genre    google    recognizing    managed    scenes    emotion    landmark    semantic    international    action    web    extremely    follow    internet    80    people    traffic    similarly    tags   

Project "SensifAI" data sheet

The following table provides information about the project.

Coordinator
SENSIFAI 

Organization address
address: DREVE DE NIVELLES 182/9
city: BRUSSELS
postcode: 1160
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website https://sensifai.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SENSIFAI BE (BRUSSELS) coordinator 50˙000.00

Map

 Project objective

Google has a value of $1 trillion because it has managed to make texts searchable. However, 80% of internet traffic is videos, audios and images and they are not searchable. Making videos searchable is extremely challenging. This is why most of the video tagging is done manually and the results in automated video recognition are still limited. Mobile video recognition is also starting to emerge. SensifAI has developed a cutting-edge audio-visual deep-learning technology trained on millions of videos to recognize audio and video content and to tag them accurately. SensifAI automatically tags videos, images and audio, which makes them searchable and can be customized for a range of use cases. We believe our approach to contextual video analysis is unique and on the leading edge as it recognizes, scenes, actions, celebrities, landmarks, logos, music genre, moods and emotion and speech. SensifAI delivers the video recognition technology on the cloud on the Amazon Web Services Marketplace and can be embedded on devices such as smartphones (by OEM’s). Our software just became available on the Amazon Web Services Marketplace where we follow a unit-based pricing model ranging from €0.01/minute for recognizing landmark images/objects/celebrities/unsafe contents to €0.05/minute for general tagging and action/sport recognition. SensifAI bvba was founded by three alumni and scientists from MIT, ETH Zurich and KU Leuven, who acquired an accumulative experience in audio-visual data processing through involvement in many international projects. Imagine a day when the 30 million visually impaired Europeans use a wearable camera equipped with a software describing them the surrounding environment automatically by recognizing the semantic concept of the captured video. includes the description of the scene, objects, and activities. Similarly, imaging a technology when the 119 million aurally impaired people use a wearable microphone equipped with a software helping them.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SENSIFAI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SENSIFAI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

MHS (2019)

Metal Hydrides Hydrogen Storage

Read More  

Project Tracworx (2019)

Tracworx is a data analytics tool that allows you to establish bottlenecks in your patient flow, while understanding your efficiencies and ultimately your true capacity.

Read More  

TalentVision (2019)

INSIGHTS FOR TALENT ASSESSMENT USING COMPUTER VISION TECHNIQUES FROM NEURO PSYCHOLOGY

Read More