Explore the words cloud of the NeuroMag project. It provides you a very rough idea of what is the project "NeuroMag" about.
The following table provides information about the project.
Coordinator |
FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Organization address contact info |
Coordinator Country | Austria [AT] |
Total cost | 1˙990˙376 € |
EC max contribution | 1˙990˙376 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-10-01 to 2024-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH | AT (WIEN) | coordinator | 1˙990˙376.00 |
Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. While there is unequivocal behavioural evidence demonstrating the existence of the magnetic sense, it is the least understood of all sensory faculties. The biophysical, molecular, cellular, and neurological underpinnings of the sense remain opaque. In this application we aim to remedy this situation, exploiting an established assay, our unique infrastructure, and state-of-the-art methodology, using pigeons as a model system. The proposal will address three questions:
1) Where are the primary magnetosensors? 2) Where is magnetic information processed in the brain? 3) How is magnetic information encoded in the brain?
In Aim 1 we will explore whether inner ear hair cells are the primary sensors, and if the detection of magnetic stimuli depends on the presence of magnetic crystals or electromagnetic induction. We will employ a range of physical methods to locate magnetite, and a molecular approach to identify putative electroreceptors. In Aim 2 we will use light sheet microscopy coupled with clearing methods to undertake whole brain mapping of magnetically-induced neuronal activation in the pigeon. We will complement these studies with transcriptomic methods to molecularly and anatomically define magnetosensitive circuits within the pigeon brain. We will build on this work in Aim 3 utilising in vivo 2-photon microscopy to investigate how cells within the pigeon brain encode magnetic information. We will determine whether neurons encode for specific components of the magnetic field (i.e. inclination, intensity, and polarity) and explore whether there are spatially restricted ensembles, providing a dynamic picture of magnetically induced neuronal activity. We anticipate that these experiments will reveal a secret that nature has kept hidden for millennia; How do animals detect magnetic fields?
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROMAG" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEUROMAG" are provided by the European Opendata Portal: CORDIS opendata.