Opendata, web and dolomites

QuantumBirds SIGNED

Radical pair-based magnetic sensing in migratory birds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QuantumBirds project word cloud

Explore the words cloud of the QuantumBirds project. It provides you a very rough idea of what is the project "QuantumBirds" about.

cryptochromes    completion    guide    health    quantum    bio    event    information    proteins    encode    magnetoreception    compass    sensor    reduce    formed    prepare    birds    primary    magnificent    endeavour    successful    senses    radical    million    retinas    temperature    rely    powerful    orders    imaginative    magnitude    earth    kbt    alone    biological    neurons    stimuli    light    photochemically    six    physics    exactly    times    computing    chemistry    ground    molecules    synergetic    seems    absolutely    biochemistry    orientation    cryptochrome    magnetic    thereby    sensing    something    least    magnetoreceptor    molecular    human    prove    phenomena    firmly    detected    dependent    inspired    behavioural    sensory    songbirds    navigational    functioning    biophysics    insights    electromagnetic    receptors    revolutionise    extraordinary    occurring    experimental    multiplied    genuinely    smaller    anthropogenic    night    interactions    works    biology    sense    coherent    avian    kilometres    thousands    voyages    threshold    crucially    boltzmann    detection    constant    depends    dynamics    migratory    retinal    pairs    travelling    indirectly    questions    weak    brings    spin    staggering    quantumbirds    suggests    tissue   

Project "QuantumBirds" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 8˙561˙588 €
 EC max contribution 8˙561˙588 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 4˙225˙563.00
2    CARL VON OSSIETZKY UNIVERSITAET OLDENBURG DE (OLDENBURG) participant 4˙336˙025.00

Map

 Project objective

The navigational and sensory abilities of night-migratory songbirds, travelling alone over thousands of kilometres, are absolutely staggering. The successful completion of these magnificent voyages depends crucially on the birds’ ability to sense the Earth’s magnetic field. Exactly how this magnetic sense works is one of the most significant open questions in biology and biophysics. The experimental evidence suggests something extraordinary. The birds’ magnetic compass sensor seems to rely on coherent quantum phenomena that indirectly allow magnetic interactions a million times smaller than kBT (Boltzmann’s constant multiplied by temperature) to be detected in biological tissue. QuantumBirds brings together quantum physics, spin chemistry, behavioural biology, biochemistry, and molecular biology in a unique, ambitious, imaginative and genuinely synergetic research programme that will prove whether the primary magnetic detection event occurring in the birds’ retinas involves the quantum spin dynamics of photochemically formed radical pairs in cryptochrome proteins.

We will address three specific questions:

1. Are avian cryptochromes capable of functioning as magnetic compass receptors? 2. Do retinal neurons encode light-dependent, cryptochrome-derived magnetic information? 3. Are cryptochromes the primary magnetoreceptor molecules for magnetic compass orientation?

Success in this endeavour will: (a) revolutionise our understanding of magnetoreception, the least understood of all biological senses; (b) firmly establish the emerging field of “Quantum Biology” and thereby reduce by six orders of magnitude the threshold for sensory detection of weak stimuli in biological systems; (c) prepare the ground for the development of a novel and powerful range of bio-inspired magnetic sensing devices; and (d) provide insights that could be applied in quantum computing and guide research into the potential effects of weak anthropogenic electromagnetic fields on human health.

 Publications

year authors and title journal last update
List of publications.
2019 H. G. Hiscock, T. W. Hiscock, D. R. Kattnig, T. Scrivener, A. M. Lewis, D. E. Manolopoulos, P. J. Hore
Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light
published pages: , ISSN: 0033-5835, DOI: 10.1017/s0033583519000076
Quarterly Reviews of Biophysics 52 2020-03-11
2019 Thomas C. Player, P. J. Hore
Viability of superoxide-containing radical pairs as magnetoreceptors
published pages: 225101, ISSN: 0021-9606, DOI: 10.1063/1.5129608
The Journal of Chemical Physics 151/22 2020-03-11
2019 Brian D. Zoltowski, Yogarany Chelliah, Anushka Wickramaratne, Lauren Jarocha, Nischal Karki, Wei Xu, Henrik Mouritsen, Peter J. Hore, Ryan E. Hibbs, Carla B. Green, Joseph S. Takahashi
Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon
published pages: 19449-19457, ISSN: 0027-8424, DOI: 10.1073/pnas.1907875116
Proceedings of the National Academy of Sciences 116/39 2020-03-11
2020 Thomas P. Fay, Lachlan P. Lindoy, David E. Manolopoulos, P. J. Hore
How quantum is radical pair magnetoreception?
published pages: 77-91, ISSN: 1359-6640, DOI: 10.1039/c9fd00049f
Faraday Discussions 221 2020-03-11
2019 Dmitry Kobylkov, Joe Wynn, Michael Winklhofer, Raisa Chetverikova, Jingjing Xu, Hamish Hiscock, P. J. Hore, Henrik Mouritsen
Electromagnetic 0.1–100 kHz noise does not disrupt orientation in a night-migrating songbird implying a spin coherence lifetime of less than 10 µs
published pages: 20190716, ISSN: 1742-5689, DOI: 10.1098/rsif.2019.0716
Journal of The Royal Society Interface 16/161 2020-03-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUANTUMBIRDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUANTUMBIRDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More