Explore the words cloud of the CellularLogistics project. It provides you a very rough idea of what is the project "CellularLogistics" about.
The following table provides information about the project.
Coordinator |
UNIVERSITEIT UTRECHT
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 2˙000˙000 € |
EC max contribution | 2˙000˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-05-01 to 2024-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITEIT UTRECHT | NL (UTRECHT) | coordinator | 2˙000˙000.00 |
The organization and dynamics of the MT (MT) cytoskeleton underlies the morphology, polarization and division of most cells. The structural polarity of MT determines the directionality of motor proteins, which move selectively towards either the MT plus (most kinesins) or minus end (dynein) to control the transport and positioning of proteins and organelles. Understanding how different cellular MT arrays, such as the mitotic spindle or neuronal MT networks, are built and utilized to ensure proper cellular logistics is a central challenge in cell biology. Recently, our lab has introduced a new technique, motor-PAINT, to directly resolve MT polarity and the relation between MT orientations, stability and modifications. This revealed that in neurons, the mixed polarity MT network in the dendrites is much more ordered than previously anticipated. MTs with opposite orientations have different properties and are preferred by distinct kinesins, revealing an architectural principle that could explain why different plus-end directed motors move towards distinct destinations. Nevertheless, the mechanisms by which this specialized organization is established and the different ways in which it modulates intracellular transport have remained unknown. To resolve how cytoskeletal organization guides transport, I propose to explore the form, formation and functioning of the neuronal MT cytoskeleton. We will combine advanced microscopy, molecular biology, and mathematical modelling to: 1) Create a complete 3D map of the dendritic MT cytoskeleton – form. 2) Unravel the mechanisms that establish MT organization in dendrites – formation. 3) Explore how specific MT configurations modulate intracellular transport – function. This research will uncover key mechanisms of cytoskeletal organization and transport in neurons. In addition, our techniques and concepts will aid understanding intracellular transport in other cellular systems.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CELLULARLOGISTICS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CELLULARLOGISTICS" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read MoreDiscovering a novel allergen immunotherapy in house dust mite allergy tolerance research
Read More