Opendata, web and dolomites

PICModForPCa SIGNED

Personalised Image-based Computational Modelling Framework to Forecast Prostate Cancer

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PICModForPCa project word cloud

Explore the words cloud of the PICModForPCa project. It provides you a very rough idea of what is the project "PICModForPCa" about.

strategy    wise    indolent    simulations    simulation    equations    data    computationally    validated    active    ageing    survival    posterior    cancer    life    collaborations    start    overtreatment    patients    regular    meeting    images    closely    candidate    skills    provides    mpmri    led    magnetic    compromise    health    patient    ideal    researcher    imaging    wealth    precise    directed    guide    quality    differential    predictive    individualisation    men    voxel    independent    treatment    previously    organ    network    undertreatment    hence    run    evolution    offers    model    background    communications    personalise    limited    prostate    phenomena    surveillance    resonance    multiparametric    tests    ing    pca    unresolved    written    mechanical    computational    scientific    clinical    unparalleled    priorities    proposes    optimise    medical    inverse    worldwide    obtain    solving    actual    tumour    forecast    date    rely    models    building    respectively    issue    monitored    techniques    derive    tumours    threatening    biological    dates    mathematical    scenarios    diagnosis    personalised    oral   

Project "PICModForPCa" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI PAVIA 

Organization address
address: STRADA NUOVA 65
city: PAVIA
postcode: 27100
website: www.unipv.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 251˙002 €
 EC max contribution 251˙002 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI PAVIA IT (PAVIA) coordinator 251˙002.00
2    THE UNIVERSITY OF TEXAS SYSTEM US (AUSTIN) partner 0.00

Map

 Project objective

Prostate cancer (PCa) is a major health problem among ageing men worldwide, especially in Europe. However, the medical management of PCa only offers limited individualisation and has led to significant overtreatment and undertreatment, which may compromise patient quality of life and survival respectively. Active surveillance is a clinical strategy in which patients with life-threatening PCa are directed to treatment while those with indolent tumours remain closely monitored via regular clinical tests and medical imaging. Multiparametric magnetic resonance imaging (mpMRI) provides high-quality data on PCa and is increasingly used in its diagnosis and surveillance, but computationally exploiting the wealth of data in these images to obtain precise information on tumour evolution to guide clinical management is an unresolved challenge. To address this timely issue, this project proposes to derive a personalised predictive mathematical model of PCa based on mpMRI to run organ-scale simulations that improve diagnosis and forecast the patient’s tumour evolution. The model will rely on robust biological and mechanical phenomena described via differential equations whose parameters are identified voxel-wise by solving an inverse problem using the patient’s clinical and mpMRI data at two dates. The model will then be validated by comparing simulation and actual data at a posterior date. The resulting predictive technology offers an unparalleled advance to personalise and optimise active surveillance for PCa, hence meeting many European Commission priorities for research in cancer. The candidate has previously developed computational models and methods to study PCa growth in clinical scenarios. Building on this ideal background, this project will provide him with crucial scientific techniques and skills to become a leading independent researcher, produce high-impact oral and written communications, and start an active network of collaborations between the US and Europe.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PICMODFORPCA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PICMODFORPCA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

G20LAP (2019)

G20 Legitimacy and Policymaking

Read More  

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More