Opendata, web and dolomites

THERA SIGNED

Timing of Holocene volcanic eruptions and their radiative aerosol forcing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "THERA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET BERN 

Organization address
address: HOCHSCHULSTRASSE 6
city: BERN
postcode: 3012
website: http://www.unibe.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙978˙923 €
 EC max contribution 1˙978˙923 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET BERN CH (BERN) coordinator 1˙978˙923.00

Map

 Project objective

Volcanic eruptions play a dominant role in driving climate, in ways beyond the established short-term influence on surface air temperatures. In order to mitigate and adapt to the climate effects of future large volcanic eruptions we need to better quantify the risk of these eruptions including 1) the probability of their occurrence and 2) their expected climatic impact. The observational record of the timing of volcanic eruptions, their locations, magnitudes of sulphate aerosol injection is incomplete which limits our understanding of the sensitivity of the Earth system to volcanism and the vulnerability of social and economic systems to the climate impact of past and future eruptions.

The primary goal of this proposal is to extract data on the timing, magnitudes and source locations of all major volcanic eruptions occurring during the Holocene (i.e., the past 12,000 years) to answer the questions: What is the likelihood of a stratospheric sulfur injection as large as that from the colossal eruption of Tambora in 1815 to occur somewhere on the globe within the next 100 years? What is the role of effusive eruptions on past, present and future climate? This will be achieved by employing novel, precisely dated, high-time resolution aerosol measurements from bipolar ice-core arrays. New tools will be used to constrain source parameters of the eruptions (location, plume injection height) that control their effects on climate. THERA will constrain recurrence rates for one of the largest global-scale natural hazards, while also assessing linkages between volcanic perturbations and key components of the climate systems (e.g., atmospheric circulation, droughts, ice-sheets and sea-level) through interdisciplinary case studies. As a final goal, THERA will generate global-scale, space-and-time resolved stratospheric aerosol properties for climate models to simulate the volcanic influence on Holocene climate evolution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THERA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THERA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More