Opendata, web and dolomites

COMBO3D SIGNED

Composite mould tool based on 3D printing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COMBO3D" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET MUENCHEN 

Organization address
address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333
website: www.tu-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 806˙140 €
 EC max contribution 806˙140 € (100%)
 Programme 1. H2020-EU.3.4.5.4. (ITD Airframe)
 Code Call H2020-CS2-CFP08-2018-01
 Funding Scheme CS2-RIA
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 364˙000.00
2    ALPEX TECHNOLOGIES GMBH AT (MILS) participant 250˙000.00
3    Victrex Manufacturing Limited UK (Thornton-Cleveleys) participant 99˙000.00
4    LKR LEICHTMETALL KOMPETENZZENTRUM RANSHOFEN GMBH AT (RANSHOFEN) participant 93˙140.00

Map

 Project objective

COMBO3D proposes to additively manufacture a short fibre reinforced thermoplastic tool with integrated active temperature control, to shorten the cure cycle time and so to focus on the objectives addressing the limitations and implementing the improvements of the state of the art project. By using a robot guided large scale short fibre reinforced plastics extrusion additive manufacturing process the tool can be produced as a single part, directly integrating the temperature control, shortening the lead-time and enabling simple and fast restoration of the tool surface to compensate for the expected lower lifespan. Using a robot-guided process also allows to print the final demonstrator tool in one piece in curved layers (real 3D printing). To ensure tool stability during the curing cycle, short carbon fibre reinforced semi-crystalline high performance thermoplastic PAEK will be used. Commercially available PAEK have a form stability of over 250°C in unreinforced grades and CF filled grades are available with heat deflection temperatures of 315°C and more. By introducing heating elements in the tool, it can conduct heat to the parts lower surface, in combination with the autoclave or oven, heating it up from both sides. These heating elements can be electrical or fluid channels connected to an external temperature control. Electric heating elements provide higher heat up rates but fluid heating allows to change from heating to cooling mode and hence to also cool the tool. Thereby it is possible to also achieve faster cool down. COMBO3D therefore proposes to use both heating elements in the tool. The whole development of the printed tool is supported by simulation. The design of the tool will be optimized by implementing the heating and cooling system in a thermal simulation. The manufacturing process simulation supports the printing process by generating knowledge about the temperature distribution during printing and correlating it with path planning.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMBO3D" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMBO3D" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.4.)

TREAL (2019)

Thermoplastic material allowable generation using a reliability-based virtual modeling platform

Read More  

HEFESTO (2018)

Helicopter Engine Deck - Multifunctional layered insulation for CFRP fire andthermal protection

Read More  

WELTMAP (2019)

Wheel Lightweight Manufacturing Process

Read More