Explore the words cloud of the inCREASE project. It provides you a very rough idea of what is the project "inCREASE" about.
The following table provides information about the project.
Coordinator |
TECHNISCHE UNIVERSITAET MUENCHEN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙471˙750 € |
EC max contribution | 1˙471˙750 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-03-01 to 2024-02-29 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | TECHNISCHE UNIVERSITAET MUENCHEN | DE (MUENCHEN) | coordinator | 1˙471˙750.00 |
Communication and data storage systems are indispensable parts of our every-day life. However, these systems deal with severe challenges in security and reliability. Security is important whenever a user communicates or stores sensitive data, e.g., medical information; reliability has to be guaranteed to be able to transmit or store information while noise occurs. Algebraic codes (ACs) are a powerful means to achieve both.
Within inCREASE, I will construct and evaluate special codes for security applications and DNA storage. The tasks are structured into three work packages: (1) post-quantum secure code-based cryptosystems, (2) secure key regeneration based on ACs, (3) ACs for DNA-based storage systems. The focus of inCREASE lies on innovative theoretical concepts.
The goal of work package (1) is to investigate and design code-based cryptosystems; one promising idea is to apply insertion/deletion correcting codes. The security of these systems will be analysed from two points of view: structural attacks on the algorithms and hardware implementations with side-channel attacks.
Secure cryptographic key regeneration is the goal of (2) and can be achieved by physical unclonable functions (PUFs). Here, ACs are necessary to reproduce the key reliably. This project will study the error patterns that occur in PUFs, model them theoretically, and design suitable coding schemes.
The investigation on (3) will start with a study of the data of existing DNA storage systems. The outcome will be an error model that will include insertions, deletions, substitutions, and duplications. Therefore, inCREASE will design ACs for these error types. This will be especially challenging regarding the mathematical concepts. These codes will be evaluated by simulations and using data sets of DNA storage systems.
This project is high risk/high gain with impact not only to storage and security, but to the methodology as well as other areas such as communications.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INCREASE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "INCREASE" are provided by the European Opendata Portal: CORDIS opendata.
Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell
Read MoreA need for speed: mechanisms to coordinate protein synthesis and folding in metazoans
Read MoreJust because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life
Read More