Opendata, web and dolomites

IntratumoralNiche SIGNED

Defining heterocellular signalling within the intratumoral stem cell niche of colorectal cancer

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "IntratumoralNiche" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAIR MEDISCH CENTRUM UTRECHT 

Organization address
address: HEIDELBERGLAAN 100
city: UTRECHT
postcode: 3584 CX
website: www.umcutrecht.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAIR MEDISCH CENTRUM UTRECHT NL (UTRECHT) coordinator 1˙500˙000.00

Map

 Project objective

Purpose: Cells in a tumor are highly heterogeneous. The role and consequence of having multiple cell types within a cancer is mostly centered towards the function of cancer stem cells (CSCs) since they are the driving forces of tumor growth. However, the exact signaling cues that support CSC function remain to be understood. For instance, what are the roles of immediate descendant tumor cells in relation to CSC support? Do colorectal tumors make their own niche?

Preliminary data: To study communication between different cell types (heterocellular signaling) in human colorectal cancers (CRCs), my lab developed movieSTAR technology to mark CSCs in patient-derived CRC organoids (PDOs) for high-resolution live imaging of their dynamics and behavior. Although niche factor dependency decreases along the adenoma-carcinoma transition, we identified a strong interdependency between CSCs and other tumor cells in colorectal PDOs of malignant nature.

Hypothesis: We hypothesize a continuous existence of an intratumoral stem cell niche that remains essential for tumor growth and metastasis formation. Which types of heterocellular signaling support CSC function, especially at malignant stages, is unknown.

Approach: This project aims to define heterocellular signaling between CSCs and intratumoral niche cells. Therefore, I) we will combine our expertise in human organoid technology for in-depth characterization of the nature of heterocellular communication within the intratumoral niche, II) high-resolution live imaging of PDOs to interrogate heterogeneity of signaling activities at cellular resolution and in real-time, as well as III) in vivo mouse models for validation and further studies of essential intratumoral signaling pathways.

Innovation: Our integrative use of novel approaches will provide comprehensive insight into intratumoral niche function during tumorigenesis, establishing novel technologies for future cancer research and new concepts to improve cancer therapy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INTRATUMORALNICHE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INTRATUMORALNICHE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

Back2theFuture (2020)

Back to the Future: Future expectations and actions in late medieval and early modern Europe, c.1400-c.1830

Read More  

UNITY (2020)

A Single-Photon Source Featuring Unity Efficiency And Unity Indistinguishability For Scalable Optical Quantum Information Processing

Read More