Opendata, web and dolomites

InWingSpeak SIGNED

From Insect Wings to Miniature Loudspeakers - A Bionic Modelling Approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "InWingSpeak" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET GRAZ 

Organization address
address: UNIVERSITATSPLATZ 3
city: GRAZ
postcode: 8010
website: http://www.uni-graz.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 174˙167 €
 EC max contribution 174˙167 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET GRAZ AT (GRAZ) coordinator 174˙167.00

Map

 Project objective

Crickets and bush-crickets use their wings to produce a wide range of often impressively loud courtship songs highly variable in pitch and temporal patterns. The wings of these insects have evolved to be miniaturised and optimised resonators in order to radiate their highly amplified acoustic signals and therefore offer unique solutions for efficient, light-weight acoustic transducers. Here, I propose a novel combination of state-of-the-art bioacoustic and imaging techniques (among others, laser Doppler vibrometry and micro-computational tomography), comparative morphology and two independent but complementary mathematical modelling approaches (agent-based as well as finite element modelling) to investigate the biomechanic and bioacoustic system properties of cricket and bush-cricket wings. By applying these multidisciplinary techniques and methods to a variety of wings, I will derive mechano-acoustic system properties that will allow unravelling of the relationship between wing morphology and emerging resonance properties underlying sound production. The resulting knowledge, combined with modern modelling and simulation techniques and in silico artificial wing evolution towards desirable acoustic properties, will guide engineers in the acoustic design of innovative, biomimetic miniature loudspeakers as used in, e.g., hearing aids. Furthermore, the project results and the proposed scientific and transferable skills training will positively impact on my career development, contributing the building blocks of my future career as an independent, interdisciplinary researcher and future group leader, successfully combining bioacoustics and its evolution with bioinspired innovations for modern acoustic technologies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INWINGSPEAK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INWINGSPEAK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

ROAR (2019)

Investigating the Role of Attention in Reading

Read More