Opendata, web and dolomites

DiPipe SIGNED

Direct remote C-H functionalization in piperidine derivatives

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DiPipe" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT ANTWERPEN 

Organization address
address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000
website: www.ua.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 178˙320 €
 EC max contribution 178˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN BE (ANTWERPEN) coordinator 178˙320.00

Map

 Project objective

The transition metal-catalyzed direct functionalization of C-H bonds is a major research topic across the world. However selective (regio-, enantio-, diastereoselective) and efficient functionalization of C(sp3)-H bonds, remains a significant challenge: C(sp3)-H bonds are omnipresent in organic molecules and their dissociation energies are large. The use of directing groups (DGs) “guiding” the metal to specific C-H bonds and allowing intramolecular C-H bond activation, is a recognized general approach to address the selectivity challenge. However, their installation and removal add steps to the overall reaction sequence. This proposal aims to develop unprecedented regio- and diastereoselective transition metal-catalyzed functionalization of piperidine derivatives with haloalkenes making use of transient DGs, installed and removed in situ during catalysis. Access to a large number of substituted piperidines as well as known and new bicyclic scaffolds can be achieved via post-functionalization of the vinylpiperidine reaction products, making the aimed synthetic methodology potentially suitable for molecular library synthesis in drug discovery. A particularly challenging objective of the proposal is the remote (meta) functionalization with respect to the DG at C3 of the piperidine ring. Piperidine is chosen as a central heterocycle core in this application based on its importance in drug design and wide occurrence in commercial drugs (privileged scaffold).

 Publications

year authors and title journal last update
List of publications.
2019 Sovan Biswas, Narendraprasad Reddy Bheemireddy, Mathias Bal, Ben F. Van Steijvoort, Bert U. W. Maes
Directed C–H Functionalization Reactions with a Picolinamide Directing Group: Ni-Catalyzed Cleavage and Byproduct Recycling
published pages: 13112-13123, ISSN: 0022-3263, DOI: 10.1021/ACS.JOC.9B02299
The Journal of Organic Chemistry 84/20 2020-02-10

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DIPIPE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DIPIPE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

THE CROSSMODAL BRAIN (2020)

Neural mechanisms of crossmodal activity in blind and sighted individuals

Read More  

TGL (2019)

Transition Governance and Law

Read More  

qCHROMDEK (2019)

Quantitative insight into chromatin nanoscale structure: sub-nuclear organisation of oncoprotein DEK

Read More