Explore the words cloud of the OptoTransport project. It provides you a very rough idea of what is the project "OptoTransport" about.
The following table provides information about the project.
Coordinator |
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 191˙149 € |
EC max contribution | 191˙149 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-04-01 to 2021-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH | CH (ZUERICH) | coordinator | 191˙149.00 |
Van der Waals heterostructures consisting of atomically thin materials, such as graphene and Transition metal dichalcogenides (TMD), have generated a tremendous amount of excitement in physics over the past decade. Embedding these systems in optical cavities leads to new hybrid excitations, known as exciton-polaritons, which govern the properties of the light-matter system. In this action, we aim to harness the unique properties of monolayer materials to explore exotic many-body phenomena that emerge due to the complex interplay of optical and electronic excitations. First, we plan to develop a new prototyping platform to rapidly and deterministically prepare high-quality van der Waals heterostructures, which will allow us to investigate a wider range of parameters than ever before. Our broad physics goal is to understand how electron transport is influenced by the presence of exciton-polaritons in different scenarios. In the first set of experiments, we will investigate polaron physics in a Bose-Fermi mixture formed by electrons and polaritons in a single TMD monolayer from a transport perspective. This will subsequently pave the way to exploring novel approaches to enhance interactions between electrons using exciton-polaritons as a mediator. A potentially ground-breaking consequence of our work will be the light-induced modification of transport properties of the system and in particular the enhancement of the critical temperature for superconductivity. The proposed research will therefore have a significant impact on our understanding of transport phenomena.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTOTRANSPORT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "OPTOTRANSPORT" are provided by the European Opendata Portal: CORDIS opendata.