Explore the words cloud of the SpinScreen project. It provides you a very rough idea of what is the project "SpinScreen" about.
The following table provides information about the project.
Coordinator |
KOBENHAVNS UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 207˙312 € |
EC max contribution | 207˙312 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | KOBENHAVNS UNIVERSITET | DK (KOBENHAVN) | coordinator | 207˙312.00 |
Europe’s leadership in quantum technologies can only be sustained by fundamental research. A challenge in this field is to choose the physical platform for qubits, the units of a quantum computer. Semiconductor nanowires coupled to superconductors offer a potential solution as a platform for a new type of qubit, which has the unique advantage of being inherently protected from decoherence. The physical ingredients of this qubit are Majorana modes. A common device geometry used to investigate transport through these modes is a superconducting island coupled to a nanowire. However, at this stage little is known about the interactions of islands with quantum dots, which are themselves commonplace near charge depletion. Whereas the interaction of a single dot strongly coupled to a superconductor lead at fixed potential is known to lead to anti-ferromagnetic screening by quasiparticles in the superconductor, the interaction of the dot with an isolated superconductor remains to be explored. If this gap in the knowledge is filled, we could learn to distinguish between subgap states related to screening of the dot, and those involving the island/nanowire hybrid. Crucially, only the latter ones are related to Majorana modes. At QDev, I will investigate screening by an epitaxial superconducting Al island of a single quantum dot defined in an InAs nanowire. To do this, I will tune the coupling between the island and the dot with a gate voltage and obtain the quantum phase diagram. While most of Majorana research is understandably focused on how to make a qubit, I will tackle three more fundamental questions, which will serve this purpose in the long run and go substantially beyond the state of the art. 1) How does a single quasiparticle in the island screen a spin? 2) How does screening occur when the island cannot accept quasiparticles? 3) Can novel non-Fermi liquid physics emerge when adding a superconducting lead to the dot-island system?
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPINSCREEN" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SPINSCREEN" are provided by the European Opendata Portal: CORDIS opendata.