Opendata, web and dolomites

LeaRNN SIGNED

Principles of Learning in a Recurrent Neural Network

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LeaRNN project word cloud

Explore the words cloud of the LeaRNN project. It provides you a very rough idea of what is the project "LeaRNN" about.

larva    unknown    generating    basic    predictions    compute    kingdom    neurons    actual    feedforward    memory    signals    longer    obtain    animals    errors    consolidate    model    recurrent    preliminary    first    map    layer    selectively    manipulating    dopaminergic    provides    feedback    connectome    algorithms    functions    revolutionize    fundamental    circuit    teaching    monosynaptic    discover    updates    entire    synaptic    models    animal    forming    drosophila    match    intact    learning    cellular    time    medicine    implementing    extinguish    drives    motifs    mushroom    principles    associative    computation    maps    neuroscience    functional    tractable    neural    represented    circuits    upstream    candidate    uniquely    updating    distributed    machine    circuitry    larval    drive    multilayered    signal    body    resolution    robotics    memories    insect    constrained    prediction    sufficiency    form    building    living    connections    theoretical    generate    brain    datasets    nervous   

Project "LeaRNN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙350˙000 €
 EC max contribution 2˙350˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙350˙000.00

Map

 Project objective

Forming memories, generating predictions based on memories, and updating memories when predictions no longer match actual experience are fundamental brain functions. Dopaminergic neurons provide a so-called “teaching signal” that drives the formation and updates of associative memories across the animal kingdom. Many theoretical models propose how neural circuits could compute the teaching signals, but the actual implementation of this computation in real nervous systems is unknown. This project will discover the basic principles by which neural circuits compute the teaching signals that drive memory formation and updates using a tractable insect model system, the Drosophila larva. We will generate, for the first time in any animal, the following essential datasets for a distributed, multilayered, recurrent learning circuit, the mushroom body-related circuitry in the larval brain. First, building on our preliminary work that provides the synaptic-resolution connectome of the circuit, including all feedforward and feedback pathways upstream of all dopaminergic neurons, we will generate a map of functional monosynaptic connections. Second, we will obtain cellular-resolution whole-nervous system activity maps in intact living animals, as they form, extinguish, or consolidate memories to discover the features represented in each layer of the circuit (e.g. predictions, actual reinforcement, and prediction errors), the learning algorithms, and the candidate circuit motifs that implement them. Finally, we will develop a model of the circuit constrained by these datasets and test the predictions about the necessity and sufficiency of uniquely identified circuit elements for implementing learning algorithms by selectively manipulating their activity. Understanding the basic functional principles of an entire multilayered recurrent learning circuit in an animal has the potential to revolutionize, not only neuroscience and medicine, but also machine-learning and robotics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEARNN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEARNN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More