Opendata, web and dolomites

NanoMechShape SIGNED

Molecular control of actin network architecture and mechanics during cell shape changes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoMechShape project word cloud

Explore the words cloud of the NanoMechShape project. It provides you a very rough idea of what is the project "NanoMechShape" about.

elusive    cells    fundamental    mouse    systematically    precise    investigations    cytokinetic    contractile    regulatory    biology    embryonic    first    deformations    interdisciplinary    microscopy    architectural    categories    stem    animal    morphology    rounded    ingression    electron    spreading    lamellipodia    compare    regulated    establishment    crosstalk    truly    resolution    fate    probing    cortex    mitosis    contractions    architecture    driving    multidisciplinary    pathologies    forces    gradient    transitions    underlying    furrow    difficulty    primary    physics    tension    thin    determinants    membrane    fall    bridging    deregulation    nanoscale    principles    molecular    explore    cortical    filopodia    network    shape    nanomechshape    physiology    ing    differentiation    heart    mechanisms    cell    unveil    understand    regulation    integrating    paving    behaviors    organisation    super    morphogenesis    actin    gap    networks    comprise    exemplar   

Project "NanoMechShape" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙943˙071 €
 EC max contribution 1˙943˙071 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙943˙071.00

Map

 Project objective

Precise control of shape is key to cell physiology, and cell shape deregulation is at the heart of many pathologies. As cell morphology is controlled by forces, studies integrating physics with biology are required to truly understand morphogenesis. NanoMechShape will take such an interdisciplinary approach to investigate the regulation of animal cell shape. In animal cells, actin networks are the primary determinants of shape. Most cell shape changes fall into two categories: 1) those driven by contractions of the actin cortex, a thin network underlying the membrane in rounded cells; and 2) those resulting from transitions between the cortex and other actin networks, such as lamellipodia and filopodia. To understand cell deformations, it is thus essential to understand the regulation of cortex contractile tension and the mechanisms controlling transitions in actin architecture. NanoMechShape will comprise three aims. First, we will explore how cortex tension is regulated. We will focus on the role of cortex architecture, which remains elusive due to the difficulty in probing the organisation of the thin cortical network. We will unveil cortex architecture using super-resolution and electron microscopy, and systematically investigate how nanoscale architectural features affect tension. Second, we will explore how the identified regulatory mechanisms contribute to the establishment of a cortical tension gradient. We will focus on the gradient driving cytokinetic furrow ingression, an exemplar tension-driven shape change. Third, we will investigate transitions in actin architecture underlying cell spreading. We will compare spreading at the end of mitosis and during differentiation of mouse embryonic stem cells, paving the way to investigations of the crosstalk between cell shape and fate. By bridging a fundamental gap between molecular processes and cell-scale behaviors, our multidisciplinary study will unveil some of the fundamental principles of cell morphogenesis.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOMECHSHAPE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOMECHSHAPE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More