Opendata, web and dolomites

MHT-ImmunoEnhancer SIGNED

Stimuli-Responsive Nanoplatform to Combine Magnetic Hyperthermia with Immunemodulators Delivery for Glioblastoma Treatment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MHT-ImmunoEnhancer project word cloud

Explore the words cloud of the MHT-ImmunoEnhancer project. It provides you a very rough idea of what is the project "MHT-ImmunoEnhancer" about.

release    magnetic    treatment    strategy    mht    appears    poor    human    superior    enzymes    agent    fever    nanocubes    stimulus    responsive    turn    induce    dual    iron    efficiency    glioblastoma    cytotoxic    site    stimuli    damage    cells    consequently    cell    depletion    ph    improvements    effectivity    lethal    limit    tolerance    chemotherapy    actions    appropriate    fu    retention    therapy    mdsc    tumours    oligonucleotide    antitumour    immunosupportive    spreading    immunosuppressive    enhancement    fluorouracil    hyperthermia    temperature    ablation    urgent    thermal    effect    inability    myeloid    local    immunotherapy    tme    immune    heating    immunoenhancer    patient    cpg    polymer    hyperthermal    suppressor    critical    mdscs    gbm    suppressive    prognosis    combine    ioncs    context    limited    therapeutic    establishment    radiotherapy    play    regression    oxide    hybrid    therapies    combination    intratumoral    despite    systemic    untreatable    recurrence    conventional    platforms    reactivity    ed    extremely    overcome    tumour    microenvironment    chemotherapeutic    surgery    survival   

Project "MHT-ImmunoEnhancer" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 183˙473 €
 EC max contribution 183˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 183˙473.00

Map

 Project objective

Glioblastoma (GBM) is one of the most lethal and untreatable human tumours, and is characterized by its extremely poor prognosis. Conventional therapies, including surgery, radiotherapy and chemotherapy, have not resulted in major improvements in the survival, due to high recurrence and tumour spreading. Therefore, there is an urgent need to develop new effective therapies to improve patient survival. The establishment of an immunosuppressive tumour microenvironment (TME) in GBM is known to limit the cytotoxic effects of conventional therapies and in this context, myeloid-derived suppressor cells (MDSCs) play a critical role by promoting immune tolerance, tumour growth and spreading. Hyperthermal therapy in GBM has resulted in improved immune reactivity of tumours, despite this, its effectivity has been limited by its inability to overcome the immunosuppressive TME and induce strong systemic antitumour responses. Consequently, targeting MDSCs in combination with thermal ablation therapies appears to be a very promising strategy. The goal of the MHT-ImmunoEnhancer project is the development of a dual stimuli-responsive hybrid polymer/Iron oxide nanocubes (IONCs) delivery system in order to combine local fever-range Magnetic Hyperthermia (MHT) with MDSC depletion-targeted immunotherapy for intratumoral treatment of GBM. The specific objectives of our strategy are, 1) to exploit the superior heating efficiency of the hybrid polymer/IONCs platforms to induce tumour damage. 2) To turn the immunosuppressive TME into an immunosupportive one, by local delivery of CpG oligonucleotide; along with 5-Fluorouracil (5-FU), a chemotherapeutic agent. 3) To release CpG and 5-FU specifically at the tumour site under the appropriate stimulus (pH or enzymes/temperature), thus enhancing their tumour retention and therapeutic effect. All these actions will result in the reduction of T-cell-suppressive activity of MDSCs, enhancement of antitumour immune response and tumour regression.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MHT-IMMUNOENHANCER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MHT-IMMUNOENHANCER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More  

PATH (2019)

Preservation and Adaptation in Turkish as a Heritage Language (PATH) - A Natural Language Laboratory in a Small Dutch Town

Read More  

ParkIFNAR (2020)

Soluble IFNAR2 in Parkinson's disease and its role in the regulation of IFNβ in a neuroinflammatory context.

Read More