Explore the words cloud of the LEAPh project. It provides you a very rough idea of what is the project "LEAPh" about.
The following table provides information about the project.
Coordinator |
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Organization address contact info |
Coordinator Country | Italy [IT] |
Total cost | 269˙002 € |
EC max contribution | 269˙002 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2020 |
Duration (year-month-day) | from 2020-07-01 to 2023-06-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA | IT (GENOVA) | coordinator | 269˙002.00 |
2 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY | US (STANFORD) | partner | 0.00 |
Organic bioelectronics has emerged as a disruptive technology, introducing devices with unprecedented features of biocompatibility and functionality. The potential of organic materials resides not only in their favorable mechanical properties, which comply to those of biological tissues, but also on their ability to enable mixed electronic and ionic transport and on the possibility to finely tune their optoelectronic properties, such as optical absorption, charge photogeneration and transport. In addition, the synthesis of organic compounds can be tuned to further improve biocompatibility and to allow for chemical or biochemical functionalization, as well as to enable cost-effective and scalable processability of materials. For these reasons, a plethora of biocompatible, mechanically compliant, large area, multipoint biosensing and stimulating devices are now available, generating novel interaction routes between biological systems, bioelectronics devices, and consumer electronics, such as smartphones and portable devices. Because of the general involvement of ionic transport in biological environments, organic bioelectronic devices are inherently slow, i.e. characterized by slow switching capabilities, limited to few kHz. This fundamental aspect brings along some limitations, such as low-frequency operation and fluctuations of the operating parameters. The goal of the LEAPh project is to develop a novel bioelectronic device specifically devised to address in an unprecedented way the low-operating frequency of current bioelectronics, as well as providing a noise-free measurement of biochemical and biological interactions. Moreover, the same technology could pave the way towards a new class of low-voltage organic electro-optical systems.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEAPH" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LEAPH" are provided by the European Opendata Portal: CORDIS opendata.