Opendata, web and dolomites

NeuroFreezing SIGNED

Biophysical Properties of the Neuronal Cytosol and their Dynamics upon Nutrient Starvation, Aging, and in Neurodegenerative Diseases.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NeuroFreezing project word cloud

Explore the words cloud of the NeuroFreezing project. It provides you a very rough idea of what is the project "NeuroFreezing" about.

ultimately    material    polyglutamine    homogeneous    rates    diseases    h1    polyq    combining    alter    regulate    description    biophysics    critical    neurodegenerative    biochemistry    decrease    separations    crowding    viscosity    despite    aging    shifting    discovered    influence    protein    actively    trigger    techniques    aged    regulating    deprived    inherited    transport    proteins    regulated    aggregation    fundamentally    h2    potentially    cytosol    neurons    disorders    induce    stable    biophysical    metabolism    molecular    expertise    nutrient    glucose    yeast    stresses    intracellular    starvation    types    cells    environmental    exhibit    neurobiology    therapeutic    strategies    hallmark    huntington    investigation    dynamic    disease    model    cell    sufficient    poorly    hd    neuronal    hypotheses    density    cytosolic    reveal    mouse    unclear    first    volume    stress    inducing    paradigm    differences    mammalian    interactions    diffusive   

Project "NeuroFreezing" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 203˙149 €
 EC max contribution 203˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 203˙149.00

Map

 Project objective

The material properties of the cytosol control the biochemistry of the cell and influence all molecular interactions by regulating rates of intracellular diffusive transport. Despite this critical role, these properties remain poorly understood, and it is unclear to what extent the cytosol is homogeneous, whether there are differences between cell types, and if these properties are stable or dynamic. It has recently been discovered that yeast cells regulate their cytosolic properties in response to stress, namely glucose-starvation and aging. These stresses result in a decrease in cell volume and an increase in cytosolic crowding, inducing widespread phase separations and aggregation of polyglutamine (polyQ)-proteins. This type of polyQ-protein aggregation is the molecular hallmark of neurodegenerative diseases like Huntington's Disease (HD), and is very poorly understood. In this project, I will produce the first description of the biophysical properties of the neuronal cytosol, and I will directly test whether aged or nutrient-deprived neurons, or neurons from an HD mouse model exhibit changes in these properties. I propose that viscosity and density of mammalian cells, and in particular neuronal cells, are dynamic properties that can be actively regulated in response to environmental changes. In particular, I will test two hypotheses: - H1: Nutrient starvation and aging induce changes to the material properties of the neuronal cytosol. - H2: A neuronal stress-response upon starvation or aging is sufficient to trigger aggregation of polyQ-proteins. Combining state-of-the-art techniques and expertise in the fields of neurobiology, metabolism, and biophysics, my investigation of these novel and potentially paradigm shifting hypotheses could fundamentally alter our understanding of the material properties of the neuronal cytosol, and ultimately reveal new therapeutic strategies for the most common inherited neurodegenerative disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROFREEZING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUROFREEZING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

Migration Ethics (2019)

Migration Ethics

Read More