Opendata, web and dolomites

MecaMorphEME SIGNED

Four-dimensional physical modeling and numerical simulation of the early mouse embryo morphogenesis.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MecaMorphEME project word cloud

Explore the words cloud of the MecaMorphEME project. It provides you a very rough idea of what is the project "MecaMorphEME" about.

predictions    layers    incorporate    interdisciplinary    medicine    self    specification    segregated    theories    16    biophysical    unknown    proteins    intense    lacks    morphogenesis    model    largely    principles    validations    group    mechanism    reproductive    embryo    progress    mammalian    molecular    transition    developmental    cells    precise    deformations    refined    forces    experimental    reveals    actomyosin    modeling    surface    interface    governing    succession    integrating    divisions    rearrangements    ultimately    shape    cycles    biology    cell    imaging    cortex    internalization    adhesion    mechanisms    lineages    4d    contractile    regulation    cortical    mouse    outside    measured    active    designed    characterization    biochemical    accurately    framework    shapes    mechanical    dynamics    uncover    description    crosstalk    inside    physical    shell    dimensional    close    dynamic    regulated    primarily    expert    accurate    embryos    organize    quantitative    theoretical   

Project "MecaMorphEME" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://www.virtual-embryo.com/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2017-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 171˙460.00

Map

 Project objective

The quantitative understanding of the early development of mammalian embryos is essential to the progress of reproductive medicine. Yet, the physical and mechanical principles governing their morphogenesis remain largely unknown. Early mouse embryos self-organize by a succession of cell divisions, deformations and rearrangements, leading ultimately to the specification of two distinct cell lineages, segregated in inside and outside layers. Mechanical forces are therefore as important as biochemical activity in this process and precise 4-dimensional imaging of cells within the embryo reveals intense surface dynamics, regulated by contractile and adhesion proteins. However, our understanding of early embryos development still lacks a precise physical model integrating a dynamic description of the mechanical forces controlling cell shape and cell-cell adhesion.

I will design a 4D physical model of the early mouse embryo providing accurate cell dynamics predictions. Cell shapes are primarily controlled by the actomyosin cortex and they will be described using recently developed cortical active shell theories. To represent accurately cell-cell adhesion dynamics, I will consider the crosstalk between cortical and adhesion proteins activities. Importantly, this model will be designed in close collaboration with an experimental group expert in the biophysical characterization of the mouse embryo, to incorporate measured mechanical parameters and molecular regulation mechanisms. Our model will be refined through cycles of theoretical predictions and experimental validations to uncover the principles of early mammalian embryos development and, more specifically, the mechanism of cell internalization at the 8 to 16 cells transition. This interdisciplinary project, at the interface between physical modeling and developmental biology will provide a unique and accurate biophysical framework for understanding the morphogenesis of early mammalian embryos.

 Publications

year authors and title journal last update
List of publications.
2016 Jean-Léon Maître, Hervé Turlier, Rukshala Illukkumbura, Björn Eismann, Ritsuya Niwayama, François Nédélec, Takashi Hiiragi
Asymmetric division of contractile domains couples cell positioning and fate specification
published pages: 344-348, ISSN: 0028-0836, DOI: 10.1038/nature18958
Nature 536/7616 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECAMORPHEME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECAMORPHEME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More