Opendata, web and dolomites

Nanostress SIGNED

Probing stresses at the nanoscale

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Nanostress project word cloud

Explore the words cloud of the Nanostress project. It provides you a very rough idea of what is the project "Nanostress" about.

obstacle    notably    technological    fundamental    record    stresses    toughest    renewed    bearings    global    microscopic    tests    ill    fluorescence    me    contact    statistical    microscopically    mechanics    engineering    innovation    successful    energy    newtonian    molecules    fluids    physics    denominator    glass    tools    environmentally    resolution    methodology    probes    material    quantifying    frictional    locally    bottleneck    length    break    summary    ball    plastic    insights    mechanical    elasto    probing    nanometer    track    unprecedented    reaching    spatial    condensed    transition    interplay    immense    spurring    rheology    ubiquitous    viscosity    scientific    visualizing    temporal    innovative    friction    materials    dynamics    combining    transmission    plastics    local    govern    measuring    macroscopic    stress    unsolved    source    foodstuffs    confinement    sensitive    perhaps    poorly    tackle    linear    preliminary    flowing    environment    fluorescent    time    once    breakthrough    behavior   

Project "Nanostress" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT VAN AMSTERDAM 

Organization address
address: SPUI 21
city: AMSTERDAM
postcode: 1012WX
website: www.uva.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT VAN AMSTERDAM NL (AMSTERDAM) coordinator 2˙500˙000.00

Map

 Project objective

Summary:

I will exploit novel molecules whose fluorescence properties depend strongly on the environment, notably on their spatial confinement, to study local stresses in complex materials down to the nanometer length scale and with unprecedented temporal resolution. Based on successful preliminary tests, I will develop this innovative methodology to tackle the fundamental scientific challenge of quantifying the long-range and very non-linear elasto-plastic stresses that govern the dynamics of friction, the glass transition and rheology.

Friction is an immense global source of energy loss; the glass transition is perhaps the most important unsolved problem in condensed matter physics; and rheology in complex fluids is at the same time ubiquitous and poorly understood. The common denominator of these three open challenges is that in each, the material’s macroscopic mechanical behavior results from a complex interplay between microscopic stresses that remain ill characterized. This presents a scientific bottleneck as well as a major obstacle in the engineering of many important materials and tools such as ball bearings, plastics and foodstuffs.

The fluorescent environmentally sensitive probes will allow me to achieve breakthrough results in three areas at once: (1) Locally measuring stresses in a frictional contact; (2) Probing the glass transition by local stress and viscosity measurements; (3) Visualizing and quantifying stress transmission in flowing complex fluids to explain non-Newtonian and non-local viscosity effects microscopically.

I have a track record in providing new insights in long-standing problems, spurring renewed scientific interest, and in combining fundamental research with potential for technological innovation. By probing local stresses in much more detail than was possible before, this project will break open some of the toughest research areas in non-linear physics and (statistical) mechanics with far-reaching engineering consequences.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOSTRESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOSTRESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

AncientAdhesives (2019)

Ancient Adhesives - A window on prehistoric technological complexity

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More