Opendata, web and dolomites

TiMoleS SIGNED

Time-resolved Molecular Selfies (TiMoleS): Visualising molecular dynamics in real time

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "TiMoleS" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 219˙312.00

Map

 Project objective

A chemical reaction is often an unsolved maze game: we know where it starts and ends, but the path followed is a question that remains. Time-resolved imaging of molecular dynamics, therefore, is of primary interest. To solve aforementioned, we miss a sub-Ångström spatial and sub-femtosecond temporal resolution imaging scheme that can probe both nuclei and electrons. In this project TiMoleS, I propose to lay the theoretical and conceptual groundwork for such an imaging tool that can monitor molecular reaction and accompanying electron dynamics. This will be done by letting the target molecule to image by itself via two coexisting strong field processes termed laser-induced electron diffraction and laser-induced electron holography. I intend to use these processes in a complementary way to image nuclear dynamics as well as the electron cloud evolution. Through well-organized work packages for rigorous theoretical and computational developments and by collaborating with specialists of the domain, I propose to surmount difficulties linked with these processes to realize ultrafast imaging. I will develop analytical models, numerical codes and optimal control schemes to come up with rather general imaging method for AB/AB2 molecules. It will give an excellent insight into photochemical reactions, various reaction pathways and control over reaction dynamics, like enhancing the desired reaction or even to prevent an undesired process. These control scheme developed for generalized probing of the dynamics will also accelerate our attempts to design ultrashort lasers in higher frequencies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TIMOLES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TIMOLES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

EVER (2019)

Evolution of VEnom Regulation

Read More