Explore the words cloud of the TriboMetGlass project. It provides you a very rough idea of what is the project "TriboMetGlass" about.
The following table provides information about the project.
Coordinator |
OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Organization address contact info |
Coordinator Country | Austria [AT] |
Total cost | 0 € |
EC max contribution | 150˙000 € (0%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-PoC |
Funding Scheme | ERC-POC-LS |
Starting year | 2019 |
Duration (year-month-day) | from 2019-10-01 to 2021-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN | AT (WIEN) | coordinator | 150˙000.00 |
The current proposal aims to demonstrate the potential of thin film metallic glasses as novel tribological coating materials, used to improve the performance of tools, dies, and moulds in many different applications. These coatings are characterized by a high hardness, as well as high wear- and oxidation resistance. Thin film metallic glasses are promising materials to fulfil these demands. Due to their amorphous structure they have excellent mechanical properties such as high specific strengths and large elastic limits above 2%. The absence of defects like grain boundaries also makes them resistant against corrosion and wear. In comparison to conventional protective coatings based on transition metal nitrides, thin film metallic glasses have the added benefit of a relatively low elastic modulus, making them tougher and able to accommodate a certain degree of substrate deformation without delaminating. In this study, amorphous WZrB coatings will be deposited by a combinatorial dc magnetron sputter process from three elemental targets onto commercially relevant substrate materials. The primary refractory element W provides the necessary temperature stability for tribological applications, while Zr and B have both been shown to enhance the glass forming ability in W-based alloys. Experimental activities will be supported by our company partner CERATIZIT Austria GmbH, a global leader in the hard metal tooling industry. The thin film metallic glass/substrate systems will be characterized with state-of-the-art methods in terms of their chemical, mechanical, thermal, and tribological properties. Results will be critically evaluated regarding the up-scaling potential of developed processes and materials systems from laboratory to industrial conditions.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRIBOMETGLASS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TRIBOMETGLASS" are provided by the European Opendata Portal: CORDIS opendata.