Opendata, web and dolomites

Mari.Time SIGNED

Dissecting the mechanistic basis of moon-controlled monthly timing mechanisms in marine environments

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Mari.Time project word cloud

Explore the words cloud of the Mari.Time project. It provides you a very rough idea of what is the project "Mari.Time" about.

unraveled    acts    phenomena    inner    first    spawning    platynereis    environmental    substantially    daily    principles    molecules    unravel    deepen    biological    gonadal    oscillation    cue    organisms    reverse    unknown    synchronization    nocturnal    clocks    clock    fishes    suited    dissect    circalunar    unpublished    experimental    green    gene    correct    animals    timing    moon    ecologically    spearheaded    revealed    interaction    monthly    ranging    either    lab    basis    corals    establishing    function    powerful    outside    capitalizing    genetic    despite    rhythms    environment    impacts    complementary    tanks    subjecting    light    species    mechanistic    mechanisms    maturation    reproductive    screen    algae    clunio    models    position    predict    stimuli    naturalistic    worms    tools    dumerilii    underlying    behavioral    marine    circadian    mass    lunar    marinus    events    animal    continuous    spectacular    functionally    brown    absence    strategy   

Project "Mari.Time" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT WIEN 

Organization address
address: UNIVERSITATSRING 1
city: WIEN
postcode: 1010
website: www.univie.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT WIEN AT (WIEN) coordinator 2˙000˙000.00

Map

 Project objective

The correct timing of biological processes is crucial for organisms. The moon is an important timing cue for numerous marine species, ranging from brown and green algae to corals, worms and fishes. It acts either directly or via the synchronization of monthly (circalunar) inner clocks. Such lunar timing mechanisms typically control the gonadal maturation and behavioral changes associated with reproductive rhythms, including spectacular mass-spawning events. Despite their biological importance, the mechanisms underlying circalunar clocks, as well as their responses to naturalistic stimuli are unknown. My lab has spearheaded research into the mechanisms underlying circalunar timing systems, establishing tools and resources for two well-suited, complementary animal models: Platynereis dumerilii and Clunio marinus. We unraveled first principles of the circalunar clock, e.g. its continuous function in the absence of oscillation of the daily (circadian) clock. Recent unpublished work revealed the first gene that functionally impacts on circalunar rhythms. By capitalizing on these powerful tools and key findings, my lab is in a leading position to dissect the mechanisms of circalunar clocks and their interaction with other rhythms and the environment via three objectives: (1) A reverse genetic approach to unravel how nocturnal light sets the phase of the monthly clock. (2) A forward genetic screen to identify molecules involved in the circalunar clock, an experimental strategy that was the key to unravel the principles of animal circadian clocks. (3) By growing animals in outside tanks and subjecting them to established analyses, we will test our lab-based results in more naturalistic conditions. This project will substantially deepen our mechanistic insight into marine rhythms – ecologically important phenomena – and provide a first basis to predict how environmental changes might impact on timing systems of crucial importance to many marine species and likely beyond.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MARI.TIME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MARI.TIME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More