Opendata, web and dolomites

Mari.Time SIGNED

Dissecting the mechanistic basis of moon-controlled monthly timing mechanisms in marine environments

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Mari.Time project word cloud

Explore the words cloud of the Mari.Time project. It provides you a very rough idea of what is the project "Mari.Time" about.

spearheaded    revealed    environment    ecologically    moon    dissect    mechanistic    tanks    marine    lunar    naturalistic    absence    interaction    impacts    molecules    organisms    principles    brown    monthly    spectacular    events    unknown    phenomena    position    models    genetic    biological    platynereis    gonadal    algae    species    oscillation    reverse    lab    mechanisms    worms    animal    first    deepen    dumerilii    complementary    outside    circalunar    unpublished    suited    despite    synchronization    rhythms    strategy    subjecting    correct    animals    functionally    circadian    spawning    capitalizing    cue    marinus    screen    establishing    light    unravel    corals    fishes    environmental    basis    green    experimental    ranging    clock    unraveled    mass    either    stimuli    substantially    tools    clunio    gene    predict    nocturnal    clocks    function    behavioral    powerful    underlying    reproductive    inner    timing    acts    maturation    daily    continuous   

Project "Mari.Time" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT WIEN 

Organization address
address: UNIVERSITATSRING 1
city: WIEN
postcode: 1010
website: www.univie.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT WIEN AT (WIEN) coordinator 2˙000˙000.00

Map

 Project objective

The correct timing of biological processes is crucial for organisms. The moon is an important timing cue for numerous marine species, ranging from brown and green algae to corals, worms and fishes. It acts either directly or via the synchronization of monthly (circalunar) inner clocks. Such lunar timing mechanisms typically control the gonadal maturation and behavioral changes associated with reproductive rhythms, including spectacular mass-spawning events. Despite their biological importance, the mechanisms underlying circalunar clocks, as well as their responses to naturalistic stimuli are unknown. My lab has spearheaded research into the mechanisms underlying circalunar timing systems, establishing tools and resources for two well-suited, complementary animal models: Platynereis dumerilii and Clunio marinus. We unraveled first principles of the circalunar clock, e.g. its continuous function in the absence of oscillation of the daily (circadian) clock. Recent unpublished work revealed the first gene that functionally impacts on circalunar rhythms. By capitalizing on these powerful tools and key findings, my lab is in a leading position to dissect the mechanisms of circalunar clocks and their interaction with other rhythms and the environment via three objectives: (1) A reverse genetic approach to unravel how nocturnal light sets the phase of the monthly clock. (2) A forward genetic screen to identify molecules involved in the circalunar clock, an experimental strategy that was the key to unravel the principles of animal circadian clocks. (3) By growing animals in outside tanks and subjecting them to established analyses, we will test our lab-based results in more naturalistic conditions. This project will substantially deepen our mechanistic insight into marine rhythms – ecologically important phenomena – and provide a first basis to predict how environmental changes might impact on timing systems of crucial importance to many marine species and likely beyond.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MARI.TIME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MARI.TIME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Growth regulation (2019)

The wide-spread bacterial toxin delivery systems and their role in multicellularity

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More