Opendata, web and dolomites

EndoMapper SIGNED

EndoMapper: Real-time mapping from endoscopic video

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EndoMapper project word cloud

Explore the words cloud of the EndoMapper project. It provides you a very rough idea of what is the project "EndoMapper" about.

interaction    video    tubular    robotized    monocular    radical    cavities    vslam    training    tumour    routine    inside    hard    localization    first    augmented    learning    handcrafted    navigation    cartography    perform    models    accuracy    supplied    tissue    location    cameras    combine    biopsy    geometry    sequences    autonomously    rigidity    longer    autonomy    minimally    map    stream    basis    plan    algorithms    live    topology    surgery    medical    gi    deep    coded    endoscope    endoscopes    tomography    regions    explore    navigating    rigid    data    intracorporeal    incorporates    time    matches    surgeon    endoscopies    human    exact    compute    mathematical    risk    traversing    standard    lack    endomapper    mapping    drug    millimetre    secondly    minimize    perspective    attempt    body    pipelines    autonomous    instructions    firstly    machine    fundamentals    automated    detected    feed    deformable    living    endoscopy    overcoming    colon    algorithm    invasive   

Project "EndoMapper" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE ZARAGOZA 

Organization address
address: CALLE PEDRO CERBUNA 12
city: ZARAGOZA
postcode: 50009
website: www.unizar.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 3˙697˙227 €
 EC max contribution 3˙697˙227 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-2018-2019-2020-01
 Funding Scheme RIA
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2023-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE ZARAGOZA ES (ZARAGOZA) coordinator 1˙439˙125.00
2    UNIVERSITY COLLEGE LONDON UK (LONDON) participant 1˙208˙750.00
3    UNIVERSITE CLERMONT AUVERGNE FR (CLERMONT-FERRAND) participant 728˙700.00
4    ODIN MEDICAL LIMITED UK (LONDON) participant 320˙652.00

Map

 Project objective

Endoscopes traversing body cavities such as the colon are routine in medical practice. However, they lack any autonomy. An endoscope operating autonomously inside a living body would require, in real-time, the cartography of the regions where it is navigating, and its localization within the map. The goal of EndoMapper is to develop the fundamentals for real-time localization and mapping inside the human body, using only the video stream supplied by a standard monocular endoscope.

In the short term, will bring to endoscopy live augmented reality, for example, to show to the surgeon the exact location of a tumour that was detected in a tomography, or to provide navigation instructions to reach the exact location where to perform a biopsy. In the longer term, deformable intracorporeal mapping and localization will become the basis for novel medical procedures that could include robotized autonomous interaction with the live tissue in minimally invasive surgery or automated drug delivery with millimetre accuracy. Our objective is to research the fundamentals of non-rigid geometry methods to achieve, for the first time, mapping from GI endoscopies. We will combine three approaches to minimize the risk. Firstly, we will build a fully handcrafted EndoMapper approach based on existing state-of-the-art rigid pipelines. Overcoming the non-rigidity challenge will be achieved by the new non-rigid mathematical models for perspective cameras and tubular topology. Secondly, we will explore how to improve using machine learning. We propose to work on new deep learning models to compute matches along endoscopy sequences to feed them to a VSLAM algorithm where the non-rigid geometry is still hard-coded. We finally plan to attempt a more radical end-to-end deep learning approach, that incorporates the mathematical models for non-rigid geometry as part of the training of data-driven learning algorithms.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENDOMAPPER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENDOMAPPER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

PANACHE (2020)

Production of next generation modulators of pannexins and connexins as novel therapeutics in the treatment of inflammatory cardiovascular, hepatic and joint diseases.

Read More  

LABELFREE (2019)

LABEL FREE IMAGING WITH PHI-SCAT

Read More  

SHERO (2019)

Self-HEaling soft RObotics

Read More