Explore the words cloud of the WAVESCOPE project. It provides you a very rough idea of what is the project "WAVESCOPE" about.
The following table provides information about the project.
Coordinator |
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Organization address contact info |
Coordinator Country | Italy [IT] |
Total cost | 0 € |
EC max contribution | 150˙000 € (0%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-PoC |
Funding Scheme | ERC-POC-LS |
Starting year | 2019 |
Duration (year-month-day) | from 2019-10-01 to 2021-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA | IT (ROMA) | coordinator | 105˙000.00 |
2 | UNIVERSITA CATTOLICA DEL SACRO CUORE | IT (MILANO) | participant | 30˙000.00 |
3 | UNIVERSITE DE LIMOGES | FR (Limoges) | participant | 15˙000.00 |
The WAVESCOPE project is about exploiting a novel optical concept recently introduced by the PI in the domain of medical imaging. This concept deals with the frontier research topic in the photonics, i.e. the self-control of the spatial quality of optical beams in multimode nonlinear optical fibers. The WAVESCOPE technology is poised to enable a breakthrough in the clinical domain, providing for the first time ever the stable delivery of high power and strongly focused optical beams with multimode optical fibers into the demanding domain of intraoperative imaging. In the state-of-the-art multimode nonlinear optical devices, propagation in multimode fibers is hampered by randomization of light beams, leading to beam scrambling after short lengths of fiber. This makes the use of multimode fibers unviable for real-time imaging, because of the necessary lengthy pre- and post-processing of the optical signal. Our approach is to exploit the intensity dependent refractive index of fibers to recover the spatial beam quality of a multimode wave. In the project we shall develop a new multimode fiber based device for scanning 3D samples with micrometer resolution by using ultrashort high peak power optical pulses, whereby fiber nonlinearity provides an environmentally robust compensation of temporal and spatial dispersion, thus preventing information spreading in time domain, and beam quality loss in the spatial domain. WAVESCOPE technology has applications in many industry fields: here we will demonstrate the proof-of-principle generation of high-resolution optical images in optical microscopy/endoscopy, thereby resolving an uncovered need on the introduction of the intraoperative pathologic assessment in oncology through the in-situ optical biopsy.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WAVESCOPE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "WAVESCOPE" are provided by the European Opendata Portal: CORDIS opendata.